Amsterdam, Netherlands
Amsterdam, Netherlands

Time filter

Source Type

Patent
Tornier | Date: 2017-01-18

A stemless humeral shoulder assembly having a base member and an anchor advanceable into the base member. The base member can include a distal end that can be embedded in bone and a proximal end that can be disposed at a bone surface. The base member can also have a plurality of spaced apart arms projecting from the proximal end to the distal end. The anchor can project circumferentially into the arms and into a space between the arms. When the anchor is advanced into the base member, the anchor can be exposed between the arms. A recess can project distally from a proximal end of the anchor to within the base member. The recess can receive a mounting member of an anatomical or reverse joint interface.


This glenoidal component for a shoulder prosthesis comprises a base which may be immobilized on the glenoid cavity of a shoulder, and an element provided to be mounted on this base and forming a convex surface of articulation centred on an axis of symmetry. This axis of symmetry is non perpendicular to a rear face of the base intended to abut against the glenoid cavity, this making it possible to compensate a defect in parallelism between the resectioned surface of the glenoid cavity and the axis of the patients spinal column. A surgeon can select the component in which the axes of symmetry of the components are oriented differently with respect to their rear faces.


Patent
Tornier | Date: 2016-12-14

A prosthesis that mechanically couples with both cancellous bone and cortical bone of a glenoid includes a head portion comprising a rear surface and an articular surface, an anchor member, and a plurality of deformable fins extending radially outward from the anchor member. The anchor member includes a distal end and a proximal end connected to the rear surface of the head portion. The plurality of deformable fins extend radially outward from the anchor member and includes at least a first proximal fin adjacent to the rear surface of the head portion positioned to engage with the cortical bone. The anchor member may also include at least one distal fin located proximate the distal end of the anchor member positioned to engage with the cancellous bone.


Systems and methods for modifying a shoulder joint configuration exhibiting wear that take into account resultant of forces responsible for the wear of the glenoid surface from geometric characteristics of wear.


A trapeziometacarpal joint implant includes a body defining a median plane, a metacarpal joint surface, and a trapezium joint surface. A first central region of the metacarpal joint surface is situated on an opposite side of the median plane from a second central region of the trapezium joint surface. The first and second central regions correspond to profiles of a first axial segment and a second axial segment, respectively. The first and second axial segments are one of a cylinder, a cone and a torus and are centered on a first axis and a second axis, respectively, where the first and second axes, as projected on the median plane, are substantially perpendicular to each other.


Patent
Tornier | Date: 2016-05-03

This set (J) comprises glenoid components (S1, S2, M1, M2, L1, L2) that each include a body (S1.1, S2.1, M1.1, M2.1, L1.1, L2.1) defining, on two of its opposite faces, respectively, a joint surface (S1.2, S2.2, M1.2, M2.2, L1.2, L2.2), intended to cooperate with a humeral head, and a bearing surface (S1.3, S2.3, M1.3, M2.3, L1.3, L2.3) bearing against the socket of a shoulder blade. In this set, the glenoid components are provided in several different sizes (S, M, L), respectively defined by the dimensions of the joint surface of their body. At least two glenoid components (S1 and S2, M1 and M2, L1 and L2) of which the bearing surfaces (S1.3 and S2.3, M1.3 and M2.3, L1.3 and L2.3) respectively have different dimensional geometries are provided so as to allow the surgeon to improve the durability of the mechanical cooperation between the implanted component and the operated socket.


This surgical instrumentation assembly for positioning an ankle prosthesis including a tibia implant (18) and a talus implant (16), comprises a talar alignment instrument (2) adapted to be placed on a talus (T) of a patient, and relative to the rotational plane (P1) of the talus, and centered on the rotational axis (X1) of the talus, and perpendicular to the rotational plane of the talus (T) and mechanically attached to the talus (T), and a cutting block (5) adapted to be fastened to the talar alignment instrument (2) and locked with respect to a tibia (B) of the patient.


Patent
Tornier | Date: 2016-11-09

The glenoid implant includes a base plate and an articular component. The base plate can include a body and a support structure extending from a distal surface of the body. The body can include a plurality of openings. The articular component can be configured to removably couple to the base plate. The articular component can include a recessed portion configured to at least partially receive the body of the base plate. At least one engagement structure can protrude from a distal facing surface of the recessed portion. Each engagement structure can correspond to one of the plurality of openings in the body. A proximal surface of the base plate is spaced apart from the distal facing surface of the recessed portion when the articular component is coupled to the base plate.


This surgical ankle repair method comprises the steps of providing an instrumentation assembly for positioning an ankle prosthesis, the instrumentation assembly including a talar alignment instrument and a cutting block, the talar alignment instrument comprising a front portion and two fins extending from the ends of the front portion, said fins being adapted to be positioned in gutters extending below a tibia of a patient and around a trochlea of a talus of the patient, each fin including a reference marker, the cutting block comprising a tibial alignment structure and a recess which engages a protrusion provided on the talar alignment instrument, positioning the talar alignment instrument such that the fins are disposed in the gutters extending below the tibia and around the trochlea of the talus; aligning the talar alignment instrument so that the fins are parallel to the rotational plane of the talus, perpendicular to the rotational axis of the talus, and so that the reference markers are aligned with a longitudinal axis of the tibia; confirming alignment of the reference markers via imaging technology; mechanically attaching the talar alignment instrument to the talus; fastening the cutting block to the talar alignment instrument such that the recess engages the protrusion locked in a parallel orientation to the rotational plane of the talus; rotating the talus such that the tibial alignment structure is in a parallel alignment to the longitudinal axis of the tibia, thereby correcting any varus or valgus deformity of the talus; attaching the tibial alignment structure to the tibia; and performing a first resection of the talus and at least one resection of the tibia using the cutting block.


Patent
Tornier | Date: 2016-09-30

A glenoid component is provided to reduce glenoid loosening when implanted in orthopedic joint replacement/reconstruction, such for a shoulder. The glenoid component can include pegs or a keel and articulating surface geometry that uses complex, non-spherical geometry to recreate a level of constraint that is adequate, but not excessive, to thereby mitigate loosening of the glenoid component after implantation. In addition, some embodiments provide that peak stresses both within cement and at an interface of the cement and a supportive component can be reduced. Further, geometry of the pegs can allow stresses to be evenly applied to a cement mantle formed in the supportive component. Finally, the pegs can be configured to desired lengths in order to avoid placement in areas of the supportive component, for example, that have insufficient bone stock.

Loading Tornier collaborators
Loading Tornier collaborators