Livermore, CA, United States

Time filter

Source Type

A digital system of measuring parameters of the signal (phase, frequency and frequency derivative) received in additive mixture with Gaussian noise. The system is based on the use of variables of a PLL for calculating preliminary estimates of parameters and calculating the corrections for these estimates when there is a spurt frequency caused by a receiver motion with a jerk. A jerk is determined if the low pass filtered signal of the discriminator exceeds a certain threshold. The jerk-correction decreases the dynamic errors. Another embodiment includes a tracking filter for obtaining preliminary estimates of parameters to reduce the fluctuation errors. Estimates are taken from the tracking filter when there is no jerk and from the block of jerk-corrections when there is a jerk.


A digital system of measuring parameters of the signal (phase, frequency and frequency derivative) received in additive mixture with Gaussian noise. The system is based on the use of variables of a PLL for calculating preliminary estimates of parameters and calculating the corrections for these estimates when there is a spurt frequency caused by a receiver motion with a jerk. A jerk is determined if the low pass filtered signal of the discriminator exceeds a certain threshold. The jerk-correction decreases the dynamic errors. Another embodiment includes a tracking filter for obtaining preliminary estimates of parameters to reduce the fluctuation errors. Estimates are taken from the tracking filter when there is no jerk and from the block of jerk-corrections when there is a jerk.


Patent
Topcon Positioning Systems | Date: 2017-05-10

A system for displaying information to an operator of a machine comprises a head tracking system and a projection system. One system for displaying information uses a projection system and a see-through display to present two-dimensional images to an operator. One system uses a projection system and a see-through display to present three-dimensional images to an operator. One system uses a pair of smart glasses to display information to a user based a direction a user is looking.


Patent
Topcon Positioning Systems | Date: 2017-05-03

Systems and methods for automating a task of a construction machine include receiving machine data from a first construction machine and a second construction machine. A load balance of the first construction machine is determined based on the received machine data. A location on the first construction machine to release a load is determined based on the load balance. A message is sent to the second construction machine to control movement for releasing a load of the second construction machine at the determined location on the first construction machine.


Patent
Topcon Positioning Systems | Date: 2017-05-03

A system and method for scheduling tasks of a construction project includes dividing a plan for a construction project into a plurality of tasks. Each particular task of the plurality of tasks is defined by one or more parameters. The one or more parameters of each particular task are modified based on an operational model defining a sequence of actions for performing the particular task. A construction machine is assigned to each particular task based on the modified one or more parameters of the particular task. Each particular task is dispatched to the construction machine assigned to the particular task for presenting the sequence of actions for performing the particular task.


Patent
Topcon Positioning Systems | Date: 2017-02-08

Disclosed is a method for mapping network identifiers to a set of sensor modules that measure a three-dimensional action vector and that are sensitive to orientation in three-dimensional space. Each sensor module is mounted at a different position on a machine such that the orientation of each sensor module is different. The method includes one or two stages. In the first stage, the machine is placed in a stationary state, and measurements of a static action vector from a sensor module identified by a network identifier are correlated with expected measurements from a sensor module having a corresponding orientation and corresponding position. In the second stage, the machine is placed in a dynamic state, and measurements of a dynamic action vector from a sensor module identified by a network identifier are correlated with expected measurements from a sensor module having a corresponding orientation and corresponding position.


Patent
Topcon Positioning Systems | Date: 2017-04-19

A method and a system in which an image of an object having a tip end and a plurality of markings disposed on an outer surface is acquired, a distance between the measurement system and each of the plurality of markings and a plurality of angles at which the object is positioned in the three-dimensional space are determined, a three- dimensional vector of the object is determined based on the distance between the measurement system and each of the plurality of markings and based on the plurality of angles at which the object is positioned in the three-dimensional space, and a position of the tip end in the three-dimensional space is determined based on the distance to each of the plurality of markings and based on the three-dimensional vector of the object.


An estimate of the relative attitude between an implement and a vehicle body is computed from a body angular velocity measurement received from at least one body gyro mounted on the vehicle body and from an implement angular velocity measurement received from at least one implement gyro mounted on the implement. A first system state vector estimate corresponding to a first time instant includes a representation of a first relative attitude estimate. An updated system state vector is computed based at least in part on the first system state vector estimate, the body angular velocity vector measurement, and the implement angular velocity vector measurement. A second system state vector estimate corresponding to a second time instant is predicted based at least in part on the updated system state vector and a time-dependent system model. The second system state vector estimate includes a representation of a second relative attitude estimate.


Patent
Topcon Positioning Systems | Date: 2016-01-12

A digital filter for narrowband interference rejection, including modules of narrowband interference rejection connected in series, each of which includes the following elements connected in series: a block of successive vector rotation based on the CORDIC vector rotation algorithm for integers, a block of reduction of the length of the rotated vector to maintain the same number of bits for digital signal representation, a block of high-pass filters for orthogonal components of the reduced vector in order to remove the interference from zero frequency region. The filter can be implemented without multiplication.


Patent
Topcon Positioning Systems | Date: 2016-07-17

A method of estimating current SNR in a sequence of symbols, including receiving a signal representing an additive mixture y(t)=s(t)+n(t) of a sequence of phase-modulated symbols with fixed length and phase modulation s(t) and including white Gaussian noise (AWGN) n(t); separating quadrature components I_(Y )and Q_(Y )of the received signal in a quadrature mixer; determining a mean-square I of I_(Y); determining a mean-square Q of Q_(Y); determining a square/squared value of mean absolute value (modulus) |I|^(2); determining a square of mean value for quadrature component ]Q[^(2), where values of the quadrature component Q_(Y )are averaged taking into account a sign of a symbol received in a channel; determining a current absolute value (vector length) for {square root over (I_(y)^(2)+Q_(y)^(2))}; determining the current SNR based on I, Q, |I|^(2), ]Q[^(2 )and {square root over (I_(y)^(2)+Q_(y)^(2))}; and compensating for a systematic error of the current SNR.

Loading Topcon Positioning Systems collaborators
Loading Topcon Positioning Systems collaborators