Shanghai, China
Shanghai, China

Tongji University , colloquially known as Tongji , located in Shanghai, has more than 50,000 students and 8,000 staff members . It offers degree programs at both undergraduate and postgraduate levels. Established in 1907 by the German government together with German physicians in Shanghai, Tongji is one of the oldest and most prestigious universities in China. Among its various departments it is especially highly ranked in engineering, among which its architecture, urban planning and civil engineering departments have consistently ranked first in China for decades, and its automotive engineering, oceanography, environmental science, software engineering, German language departments are also ones of the best domestically. Wikipedia.


Time filter

Source Type

Patent
Tongji University | Date: 2016-11-29

To provide a modified forward osmosis (FO) membrane module for flow regime improvement, the FO membrane module includes but not limited to: a water inlet; a water outlet; a forward osmosis (FO) membrane; a frame; and folded plates for improving flow regime in which draw solution is introduced into the water inlet of membrane module, then flowed through flow channels composed by three opposite folded plates vertically arranged on upper and bottom portions of the frame alternatively along horizontal direction with equal space; and drawn out from the water outlet. The flow regime improvement is achieved by increasing number of flow-guide folded plate, which results in the decrease of internal concentration polarization and membrane fouling. Structure of frame is modified to improve flow regime and to satisfy requirement of convenient and reliable connections between numbers of membrane modules in the FO membrane system.


This present disclosure relates to a highly effective sewage treatment based on regulation and control of directed electron flow and apparatus thereof The apparatus includes an anaerobic fermentation electron generation chamber, a heterotrophic-autotrophic denitrification chamber and an aerobic membrane separation chamber. Low concentrated organic sewage is introduced into anaerobic fermentation electron generation chamber; then, particulate and partly dissolved organic substances are intercepted and absorbed by carrier materials; and extracellular currents generated by microorganism reaction are used in following autotrophic denitrification processing. Micro-/ultra-membrane separation processing is used to improve operation load and solid-liquid separation effect of sewage treatment and thereby effluent could meet the high recycling standards. The directed electron flow is regulated and controlled to enhance nutrients removal and to reduce sludge yield and fouling rate of membrane. The sewage treatment could efficiently treat low concentrated organic sewage at normal temperature (>15 C.) and dramatically decrease energy consumption.


The present invention relates to pharmaceutical and medical technologies, and more particularly to novel nanobodies against pulmonary surfactant protein A (SP-A) and their preparation methods. The nanobodies of the present invention comprises an amino acid sequence having certain formula. The present invention also relates to nucleic acid sequences encoding the nanobodies, their preparation method and their applications. Immunohistochemistry and in vivo imaging show that the nanobodies of the present inventions have high lung-targeting specificity.


Patent
Tongji University and ZTE Corporation | Date: 2015-02-16

Provided are methods and devices for coding or decoding an image. The coding method includes that: one coding manner is selected for predictive or matching coding of a current CU, according to characteristics of pixel samples of the current CU and an adjacent CU of the current CU, from A predetermined predictive coding manners and matching coding manners including at least one predictive coding manner with different prediction characteristics and matching coding manners with mutually different matching characteristics, and the selected coding manner is determined as an optimal coding manner, wherein the A predictive coding manners and matching coding manners include: a predictive coding manner, matching coding manner 1, matching coding manner 2, . . . and matching coding manner A-1, and A is an integer more than or equal to 2; and predictive coding or matching coding is performed on the current CU by adopting the optimal coding manner.


Du J.,Tongji University | O'Reilly R.K.,University of Warwick
Chemical Society Reviews | Year: 2011

Anisotropic particles, such as patchy, multicompartment and Janus particles, have attracted significant attention in recent years due to their novel morphologies and diverse potential applications. The non-centrosymmetric features of these particles make them a unique class of nano- or micro-colloidal materials. Patchy particles usually have different compositional patches in the corona, whereas multicompartment particles have a multi-phasic anisotropic architecture in the core domain. In contrast, Janus particles, named after the double-faced Roman god, have a strictly biphasic geometry of distinct compositions and properties in the core and/or corona. The term Janus particles, multicompartment particles and patchy particles frequently appears in the literature, however, they are sometimes misused due to their structural similarity. Therefore, in this critical review we classify the key features of these different anisotropic colloidal particles and compare structural properties as well as discuss their preparation and application. This review brings together and highlights the significant advances in the last 2 to 3 years in the fabrication and application of these novel patchy, multicompartment and Janus particles (98 references). © 2011 The Royal Society of Chemistry.


Ding C.,Tongji University | Zhu A.,Tongji University | Tian Y.,Tongji University
Accounts of Chemical Research | Year: 2014

Nanoparticles are promising scaffolds for applications such as imaging, chemical sensors and biosensors, diagnostics, drug delivery, catalysis, energy, photonics, medicine, and more. Surface functionalization of nanoparticles introduces an additional dimension in controlling nanoparticle interfacial properties and provides an effective bridge to connect nanoparticles to biological systems. With fascinating photoluminescence properties, carbon dots (C-dots), carbon-containing nanoparticles that are attracting considerable attention as a new type of quantum dot, are becoming both an important class of imaging probes and a versatile platform for engineering multifunctional nanosensors. In order to transfer C-dots from proof-of-concept studies toward real world applications such as in vivo bioimaging and biosensing, careful design and engineering of C-dot probes is becoming increasingly important.A comprehensive knowledge of how C-dot surfaces with various properties behave is essential for engineering C-dots with useful imaging properties such as high quantum yield, stability, and low toxicity, and with desirable biosensing properties such as high selectivity, sensitivity, and accuracy. Several reviews in recent years have reported preparation methods and properties of C-dots and described their application in biosensors, catalysis, photovoltatic cells, and more. However, no one has yet systematically summarized the surface engineering of C-dots, nor the use of C-dots as fluorescent nanosensors or probes for in vivo imaging in cells, tissues, and living organisms.In this Account, we discuss the major design principles and criteria for engineering the surface functionality of C-dots for biological applications. These criteria include brightness, long-term stability, and good biocompatibility. We review recent developments in designing C-dot surfaces with various functionalities for use as nanosensors or as fluorescent probes with fascinating analytical performance, and we emphasize applications in bioimaging and biosensing in live cells, tissues, and animals. In addition, we highlight our work on the design and synthesis of a C-dot ratiometric biosensor for intracellular Cu2+ detection, and a twophoton fluorescent probe for pH measurement in live cells and tissues.We conclude this Account by outlining future directions in engineering the functional surface of C-dots for a variety of in vivo imaging applications, including dots with combined targeting, imaging and therapeutic-delivery capabilities, or high-resolution multiplexed vascular imaging. With each application C-dots should open new horizons of multiplexed quantitative detection, high-resolution fluorescence imaging, and long-term, real-time monitoring of their target. © 2013 American Chemical Society.


Knowledge of subcellular localizations (SCLs) of plant proteins relates to their functions and aids in understanding the regulation of biological processes at the cellular level. We present PlantLoc, a highly accurate and fast webserver for predicting the multi-label SCLs of plant proteins. The PlantLoc server has two innovative characters: building localization motif libraries by a recursive method without alignment and Gene Ontology information; and establishing simple architecture for rapidly and accurately identifying plant protein SCLs without a machine learning algorithm. PlantLoc provides predicted SCLs results, confidence estimates and which is the substantiality motif and where it is located on the sequence. PlantLoc achieved the highest accuracy (overall accuracy of 80.8%) of identification of plant protein SCLs as benchmarked by using a new test dataset compared other plant SCL prediction webservers. The ability of PlantLoc to predict multiple sites was also significantly higher than for any other webserver. The predicted substantiality motifs of queries also have great potential for analysis of relationships with protein functional regions. The PlantLoc server is available at http://cal.tongji.edu.cn/PlantLoc/.


Zhou C.,Tongji University
Translational Lung Cancer Research | Year: 2014

Lung cancer is both the most common diagnosed cancer and the leading cause of cancer related deaths in China. During the past three decades, the incidence and mortality of lung cancer in China are increasing rapidly. According to data from National Central Cancer Registry (NCCR) in 2010, the crude incidence of lung cancer in China was 46.08 per 100,000 population (61.86 per 100,000 men and 29.54 per 100,000 women), with an estimated over 600,000 new diagnosed lung cancer patients (416,333 males and 189,613 females). Meanwhile, the crude mortality of lung cancer in China was 37.00 per 100,000 population (50.04 per 100,000 men and 23.33 per 100,000 women). Consistent with the change in developed countries, adenocarcinoma has become the most predominant histological subtype of lung cancer in China. For the majority advanced non-small-cell lung cancer (NSCLC) patients, especially patients with adenocarcinoma, targeted therapy became increasing important in the treatment. Chinese researcher have done a lot work in terms of lung cancer molecular epidemiology, therefore, in this review, we further summarized the epidemiology of driver genes in NSCLC, hoping to help clinicians to better screen certain driver genes in China for treatment decisions. © Translational lung cancer research. All rights reserved.


Cheng C.,Tongji University | Fan H.J.,Nanyang Technological University
Nano Today | Year: 2012

Branched nanowires (or referred as nanotrees, nanoforests) with tunable 3D morphology, homo or heterogeneous junction, and interface electronic alignment represent a unique system for applications in energy conversion and storage devices. Compared with 0D nanoparticles and 1D nanowires, 3D branched nanowires possess advantages including structural hierarchy, high surface areas and direct electron transport pathways. Therefore, branched nanowires are under the focus of recent research on energy materials. In this Review, the synthesis of a wide variety of branched nanostructures is summarized. The methods cover vapour phase, solution phase, and their combinations. As the main part of this Review, the latest results on the energy applications of branched nanowires in photovoltaics, photocatalysis, photoelectrochemical water splitting, supercapacitors and Li ion batteries are highlighted, and the benefits of the 3D branch structure is discussed. © 2012 Elsevier Ltd. All rights reserved.


The present invention discloses a method and a system of treating biomass wastes by biochemistry-thermochemistry multi-point interconnection. The present invention applies solid, gas and liquid products of the thermochemical treatment subsystem to the biochemical treatment subsystem and applies heat produced by the biochemical treatment subsystem to the thermochemical treatment subsystem, forming multi-point and two-way interconnection between the biochemical treatment subsystem and the thermochemical treatment subsystem, thereby increasing the yield and stability of energy gas of the biochemical treatment subsystem and reducing pollution and energy consumption of the thermochemical treatment subsystem respectively. The present invention is suitable for treating biomass wastes with high and low water contents at the same time, producing soil amendment, liquid fuel and biogas, having properties of low secondary pollution and significant reduction of greenhouse gas emission and so on. The bio-stability, humus content and nitrogen content of the solid product are as high as soil amendment, making it easy to store and transport.

Loading Tongji University collaborators
Loading Tongji University collaborators