Time filter

Source Type

Mizushima N.,Tokyo Medical and Dental University | Komatsu M.,Tokyo Metropolitan Institute of Medical Science
Cell | Year: 2011

Autophagy is the major intracellular degradation system by which cytoplasmic materials are delivered to and degraded in the lysosome. However, the purpose of autophagy is not the simple elimination of materials, but instead, autophagy serves as a dynamic recycling system that produces new building blocks and energy for cellular renovation and homeostasis. Here we provide a multidisciplinary review of our current understanding of autophagy's role in metabolic adaptation, intracellular quality control, and renovation during development and differentiation. We also explore how recent mouse models in combination with advances in human genetics are providing key insights into how the impairment or activation of autophagy contributes to pathogenesis of diverse diseases, from neurodegenerative diseases such as Parkinson disease to inflammatory disorders such as Crohn disease. © 2011 Elsevier Inc. Source

Hasegawa M.,Tokyo Metropolitan Institute of Medical Science
Acta neuropathologica communications | Year: 2014

BACKGROUND: α-Synuclein is the major component of filamentous inclusions that constitute the defining characteristic of Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, so-called α-synucleinopathies. Recent studies revealed that intracerebral injection of recombinant α-synuclein fibrils into wild-type mouse brains induced prion-like propagation of hyperphosphorylated α-synuclein pathology. However, the propagation mechanisms of α-synuclein have not been fully elucidated.RESULTS: In this study, in order to establish where and how α-synuclein pathology propagates, we injected recombinant mouse α-synuclein fibrils into three different brain areas (substantia nigra, striatum, and entorhinal cortex) of wild-type mice and compared the resulting distributions of α-synuclein pathology at 1 month after injection. Distinct patterns of pathology were observed in mice injected at the different sites. Within one month after injection, the pathology had spread to neurons in areas far from the injection sites, especially areas with direct neural connections to the injection sites. Surprisingly, phosphorylated tau and TDP-43 pathologies were also observed in mice injected with α-synuclein fibrils into striatum and entorhinal cortex at one month after injection. Phosphorylated tau and TDP-43 were accumulated in dot-like inclusions, but these were rarely colocalized with α-synuclein pathology. It seems that accumulation of α-synuclein has a synergistic effect on tau and TDP-43 aggregation. Additionally, intracerebral injection with sarkosyl-insoluble fraction prepared from wild-type mice injected synthetic α-synuclein fibrils can also induce phosphorylated α-synuclein pathology in wild-type mice.CONCLUSIONS: Our data indicate that α-synuclein aggregation spread by prion-like mechanisms through neural networks in mouse brains. Source

Tokyo Metropolitan Institute of Medical Science | Date: 2015-07-09

The present invention provides antibodies useful for diagnosing and treating tumors as well as methods of screening for antitumor agents . More specifically, tumors can be diagnosed and treated using an anti-phosphorylated p62 antibody that recognizes phosphorylation of serine at position 351 of an amino acid sequence of SEQ ID No. 1 or at a position corresponding thereto. An antitumor agent can be obtained by screening for a substance that inhibits the phosphorylation or that dephosphorylates the phosphorylated serine.

Altif Laboratories and Tokyo Metropolitan Institute of Medical Science | Date: 2014-01-23

The present invention provides, as an enzyme which can be used for enzyme replacement therapy for Fabry disease, a protein having -galactosidase activity, which shows no allergic adverse side effect, shows a high stability in blood, and can be easily incorporated into a cell of an affected organ. The protein of the present invention is a protein which has acquired -galactosidase activity by changing the structure of the active site of wild-type human -N-acetylgalactosaminidase.

Tokyo Metropolitan Institute of Medical Science | Date: 2014-11-05

Protein ubiquitylation, an essential post-translational modification, regulates almost every cellular process including protein degradation, protein trafficking, signal transduction, and DNA damage response in eukaryotic cells. The diverse functions of ubiquitylation are thought to be mediated by distinct chain topologies resulting from eight different ubiquitin linkages, chain lengths, and complexities. Currently, ubiquitin linkages are generally thought to be a critical determinant of ubiquitin signaling. However, ubiquitin chain lengths, another key element of ubiquitin signaling, have not been well documented especially in vivo situation during past three decades from the discovery of ubiquitin. The reason of this was simply because no method has been available for determination of ubiquitin chain length in endogenous ubiquitylated substrates. In the present invention, a practical technique for determining the actual length of substrate-attached polyubiquitin chains from biological samples is established. Using the method, the mean length of substrate-attached polyubiquitin chains was determined and the robustness of ubiquitin chain length regulation in cells is investigated. The following is a summary of findings in this invention: 1. A method for determining ubiquitin chain length was developed and this method was named ubiquitin protection from trypsinization (Ub-ProT). 2. Using Ub-ProT, it was determined that the mean length of substrate-attached ubiquitin chains is in the dimer to decamer range. 3. By quantitative proteomics, it was found that the mean lengths of five major types of ubiquitin chains can be divided into two groups. 4. Proteasome-inhibition did not alter the mean length of substrate-attached polyubiquitin chains, indicating that cells have a robust system for regulating ubiquitin chain length.

Discover hidden collaborations