Entity

Time filter

Source Type


Sugihara T.,Japan Institute for Environmental Sciences | Murano H.,Tohoku Environmental science Services Corporation | Tanaka K.,Japan Institute for Environmental Sciences
PLoS ONE | Year: 2012

Background: The molecular mechanisms of DNA repair following chronic medium-dose-rate (MDR) γ-ray-induced damage remain largely unknown. Methodology/Principal Findings: We used a cell function imager to quantitatively measure the fluorescence intensity of γ-H2A.X foci in MDR (0.015 Gy/h and 0.06 Gy/h) or high-dose-rate (HDR) (54 Gy/h) γ-ray irradiated embryonic fibroblasts derived from DNA-dependent protein kinase mutated mice (scid/scid mouse embryonic fibroblasts (scid/scid MEFs)). The obtained results are as follows: (1) Automatic measurement of the intensity of radiation-induced γ-H2A.X foci by the cell function imager provides more accurate results compared to manual counting of γ-H2A.X foci. (2) In high-dose-rate (HDR) irradiation, γ-H2A.X foci with high fluorescence intensity were observed at 1 h after irradiation in both scid/scid and wild-type MEFs. These foci were gradually reduced through de-phosphorylation at 24 h or 72 h after irradiation. Furthermore, the fluorescence intensity at 24 h increased to a significantly greater extent in scid/scid MEFs than in wild-type MEFs in the G1 phase, although no significant difference was observed in G2/M-phase MEFs, suggesting that DNA-PKcs might be associated with non-homologous-end-joining-dependent DNA repair in the G1 phase following HDR γ-ray irradiation. (3) The intensity of γ-H2A.X foci for continuous MDR (0.06 Gy/h and 0.015 Gy/h) irradiation increased significantly and in a dose-dependent fashion. Furthermore, unlike HDR-irradiated scid/scid MEFs, the intensity of γ-H2A.X foci in MDR-irradiated scid/scid MEFs showed no significant increase in the G1 phase at 24 h, indicating that DNA repair systems using proteins other than DNA-PKcs might induce cell functioning that are subjected to MDR γ-ray irradiation. Conclusions: Our results indicate that the mechanism of phosphorylation or de-phosphorylation of γ-H2A.X foci induced by chronic MDR γ-ray irradiation might be different from those induced by HDR γ-ray irradiation. © 2012 Sugihara et al.


Sugihara T.,Japan Institute for Environmental Sciences | Murano H.,Tohoku Environmental science Services Corporation | Nakamura M.,Tohoku Environmental science Services Corporation | Tanaka K.,Japan Institute for Environmental Sciences
Radiation Research | Year: 2013

The biological activities of molecules secreted into the serum of mice chronically irradiated with γ rays at low or medium dose rate (L/MDR) have not been well studied. In this work, the bioactive molecules found in the serum of chronically irradiated mice (dose rate: 0.0181 Gy/h) were characterized by a cell-based assay (CBA) using microarrays. This technique can predict changes in cytokine levels in serum by measuring gene expression profiles and analyzing molecular signaling pathways. Gene expression in cultured mouse embryo fibroblasts (MEFs) 1 day after addition of serum from nonirradiated or irradiated mice had different profiles. A high level of expression of lipocalin2 (Lcn2) was induced in MEFs upon addition of serum from MDR irradiated mice, and Lcn2 was used as a marker for identifying secreted molecules in serum. Based on microarray analysis of molecular pathways, we predicted that the enhanced gene expression of Lcn2 in MEFs might be caused by interleukin-1 (IL-1) in the serum of the irradiated mice, and that an IL-1α antibody could completely neutralize the enhanced gene expression of Lcn2 in MEFs. The increase in IL-1α levels in the serum from the irradiated mice was confirmed by ELISA experiments. However, an increase in IL-1β could not be detected. These results indicated that IL-1α was released into the serum of mice chronically exposed to a high dose of γ-ray radiation at MDR. We therefore believe that the CBA method using microarrays will be applicable for the screening of bioactive molecules in serum, which will be useful for detecting various diseases and metabolic changes.


Sugihara T.,Japan Institute for Environmental Sciences | Murano H.,Tohoku Environmental science Services Corporation | Nakamura M.,Tohoku Environmental science Services Corporation | Ichinohe K.,Japan Institute for Environmental Sciences | Tanaka K.,Japan Institute for Environmental Sciences
Molecular Cancer Research | Year: 2011

The ataxia telangiectasia mutated (ATM)-p53 pathway is a well-known main signal transduction pathway for cellular responses, which is activated by g-ray irradiation. Microarray analysis showed changes in the expressions of IFN-stimulated genes (ISG) in g-ray-irradiated Balb/cA/Atm-deficient mouse embryonic fibroblasts (MEF) (ATM-KO), indicating that another pathway for cellular responses besides the ATM-p53 pathway was activated by g-ray irradiation. The basal expression levels of Irf7 and Stat1 in ATM-KO and p53-deficient MEFs (p53-KO) were higher than those in Atm-wild-type MEFs (ATM-WT) and p53-wild-type MEFs (p53-WT), respectively. Irradiation stimulated the expressions of Irf7 and Stat1 in ATM-KO, p53-KO, ATM-WT, and p53-WT, indicating that upregulation of Irf7 and Stat1 expressions by irradiation did not depend on the ATM-p53 pathway. When conditioned medium (CM) obtained from irradiated ATM-WT or ATM-KO was added to nonirradiated MEFs, the expressions of Irf7 and Stat1 increased. We predicted that gene activation in nonirradiated MEFs was caused by IFN-a/b. Unexpectedly, significant amount of IFN-a/b could not be detected in theCMfrom irradiated ATM-WT or ATM-KO. Meanwhile, increased expression of Ccl5 (RANTES) protein was detected in the CM from irradiated MEFs. These results indicate that ISGs were activated by g-ray irradiation independently of the ATM-p53 pathway and gene activation was caused by radiation-induced soluble factors. Mol Cancer Res; 9(4); 476-84. © 2011 American Association for Cancer Research.


Sugihara T.,Japan Institute for Environmental Sciences | Murano H.,Tohoku Environmental science Services Corporation | Nakamura M.,Tohoku Environmental science Services Corporation | Ichinohe K.,Japan Institute for Environmental Sciences | Tanaka K.,Japan Institute for Environmental Sciences
Radiation Research | Year: 2011

The time course of the changes in the expression of p53-mediated genes in vivo after high doses of chronic low-dose-rate γ radiation remains unclear. Here we analyzed peripheral blood cell counts and the expression of p53-mediated genes in the spleens of mice chronically irradiated at low dose rate (0.0167 Gy/h) for 1-40 days. Low-dose-rate irradiation induced p53-dependent chronic decreases in white blood cell (WBC) counts in p53 wild-type mice. Upregulation of p53-mediated genes by low-dose-rate radiation was confirmed in the whole spleen cells from the p53 wild-type mice, while suppressed gene expression was observed in the spleen cells of p53-deficient mice. The expression of p21 and Bax in radiosensitive cells such as T and B lymphocytes from low-dose-rate irradiated mice at 10, 20, and 40 days were increased, although that of Mdm2 in both the lymphocytes was decreased at 20 and 40 days. Moreover, spleen weights for low-dose-rate irradiated mice were decreased at 20 and 40 days. Thus downregulation of Mdm2 in both T and B lymphocytes by low-dose-rate radiation may cause higher p53 activation; further, higher p53 expression may determine the radiosensitivity and cause a reduction in the spleen weights in low-dose-rate irradiated mice. These results indicate that p53 may be chronically activated by low-dose-rate radiation. © 2011 by Radiation Research Society.

Discover hidden collaborations