Toda Corporation

Tokyo, Japan

Toda Corporation

Tokyo, Japan
SEARCH FILTERS
Time filter
Source Type

The object of the present invention relates to ferrite particles for bonded magnets and a resin composition for bonded magnets which is capable of obtaining a bonded magnet molded product having a good magnetic force and a magnetic waveform as well as high iHc and Hk by injection molding. The present invention aims at providing a bonded magnet molded product using the ferrite particles and the resin composition. The aforementioned object of the present invention can be achieved by ferrite particles for bonded magnets which have a crystal distortion of not more than 0.14 as measured by XRD, and an average particle diameter of not less than 1.30 m as measured by Fisher method; a resin composition for bonded magnets; and a molded product obtained by injection-molding the resin composition.


Patent
Toda Corporation | Date: 2017-03-29

The present invention relates to a ferrite sintered plate having a composition comprising 47 to 50 mol% of Fe_(2)O_(3), 7 to 26 mol% of NiO, 13 to 36 mol% of ZnO, 7 to 12 mol% of CuO and 0 to 1.5 mol% of CoO, as calculated in terms of the respective oxides, in which the ferrite sintered plate has a volume resistivity of 1 x 10^(8) to 1 x 10^(12) cm and a thickness of 10 to 60 m; and a ferrite sintered sheet comprising the ferrite sintered plate on a surface of which a groove or grooves are formed, and an adhesive layer and/or a protective layer formed on the ferrite sintered plate, in which the ferrite sintered sheet has a magnetic permeability at 500 kHz a real part of which is 120 to 800 and an imaginary part of which is 0 to 30, and a product (m) of the real part of the magnetic permeability at 500 kHz of the ferrite sintered sheet and a thickness of the ferrite sintered plate is 5000 to 48000. The ferrite sintered plate and the ferrite sintered sheet according to the present invention have a high volume resistivity as well as a large value and a small value of a magnetic permeability thereof, and therefore can be suitably used as a shielding plate in a digitizer system.


Patent
Toda Corporation and Denka Company Ltd | Date: 2017-01-04

An object of the present invention is to provide a positive electrode mixture capable of conducting stable charging and discharging with a less amount of gasses generated which has an operating voltage or an initial crystal phase transition voltage of not less than 4.5 V on the basis of lithium. The present invention relates to a positive electrode mixture comprising carbon black having a bulk density of not more than 0.1 g/cm^(3), a crystallite size of 10 to 40 , an iodine adsorption of 1 to 150 mg/g, a volatile content of not more than 0.1% and a metal impurity content of not more than 20 ppm, and a positive electrode active substance having an operating voltage or an initial crystal phase transition voltage of not less than 4.5 V on the basis of lithium.


Patent
Toda Corporation | Date: 2017-03-15

The present invention relates to an RF tag comprising a magnetic antenna for transmitting and receiving information using an electromagnetic induction method, and an IC mounted to the magnetic antenna, wherein the magnetic antenna comprises a magnetic core and a plurality of coils formed on the magnetic core; the coils each have an inductance L_(1 )satisfying the specific relational formula, and are connected in parallel to each other in an electric circuit and disposed in series on the magnetic core; and a combined inductance L_(0 )of the magnetic antenna satisfies the specific relational formula. The RF tag of the present invention is used as a magnetic antenna for information communication using a magnetic field component which is capable of satisfying both reduction in size and improvement in communication sensitivity.


The present invention relates to a magnetic carrier for an electrophotographic developer comprising spherical magnetic composite particles comprising a phenol resin as a binder and ferromagnetic iron oxide particles bonded to each other through the phenol resin, wherein the spherical magnetic composite particles have a ten-point mean roughness Rz of 0.3 to 2.0 m. The magnetic carrier for an electrophotographic developer according to the present invention exhibits an excellent durability against peeling-off and abrasion of coating resins formed thereon and a high stability to mechanical stress exerted onto the carrier, is free from occurrence of spent toner, can be stably held over a long period of time without occurrence of fogging and unevenness in density of toner images, and can keep high-quality images with an excellent gradation for a long period of time.


An object of the present invention is to provide positive electrode active substance particles for non-aqueous electrolyte secondary batteries which are excellent in D.C. resistance characteristics under low-temperature conditions and a process for producing the provide positive electrode active substance particles, and a non-aqueous electrolyte secondary battery. The present invention relates to positive electrode active substance particles for non-aqueous electrolyte secondary batteries, comprising lithium composite oxide particles having a layered rock salt structure which are chemically reacted with at least Li and comprise at least one element selected from the group consisting of Ni, Co and Mn, and tungsten oxide particles, in which W is present in an amount of 0.1 to 4.0 mol% based on a total molar amount of Ni, Co and Mn in the lithium composite oxide particles, and the tungsten oxide particles have an average secondary particle diameter of 0.1 to 3.0 m.


Patent
Toda Corporation | Date: 2015-05-21

The present invention relates to a ferrite sintered plate having a composition comprising 47 to 50 mol % of Fe_(2)O_(3), 7 to 26 mol % of NiO, 13 to 36 mol % of ZnO, 7 to 12 mol % of CuO and 0 to 1.5 mol % of CoO, as calculated in terms of the respective oxides, in which the ferrite sintered plate has a volume resistivity of 110^(8 )to 110^(12)cm and a thickness of 10 to 60 m; and a ferrite sintered sheet comprising the ferrite sintered plate on a surface of which a groove or grooves are formed, and an adhesive layer and/or a protective layer formed on the ferrite sintered plate, in which the ferrite sintered sheet has a magnetic permeability at 500 kHz a real part of which is 120 to 800 and an imaginary part of which is 0 to 30, and a product (m) of the real part of the magnetic permeability at 500 kHz of the ferrite sintered sheet and a thickness of the ferrite sintered plate is 5000 to 48000. The ferrite sintered plate and the ferrite sintered sheet according to the present invention have a high volume resistivity as well as a large value and a small value of a magnetic permeability thereof, and therefore can be suitably used as a shielding plate in a digitizer system.


Positive electrode active material particle powder includes lithium manganese oxide particle powder having Li and Mn as main components and a cubic spinel structure with an Fd-3m space group. The lithium manganese oxide particle powder is composed of secondary particles, which are aggregates of primary particles, an average particle diameter (D50) of the secondary particles being from 4 m to 20 m, and at least 80 % of the primary particles exposed on surfaces of the secondary particles each have a polyhedral shape in which each (111) plane thereof is adjacent to at least one (100) plane thereof.


Positive electrode active material particle powder includes: lithium manganese oxide particle powder having Li and Mn as main components and a cubic spinel structure with an Fd-3m space group. The lithium manganese oxide particle powder is composed of secondary particles, which are aggregates of primary particles, an average particle diameter (D50) of the secondary particles being from 4 m to 20 m, and at least 80 % of the primary particles exposed on surfaces of the secondary particles each have a polyhedral shape having at least one (110) plane that is adjacent to two (111) planes.


The present invention relates to carbon nanotubes that are excellent in dispersibility and a process for producing the carbon nanotubes. The carbon nanotubes according to the present invention each comprise a wall that comprises a parallel portion and a narrowed portion having a tube outer diameter that is not more than 90% of a tube outer diameter of the parallel portion. Thus, the carbon nanotubes are readily dispersible owing to a high abundance ratio of easily-breaking portions.

Loading Toda Corporation collaborators
Loading Toda Corporation collaborators