Entity

Time filter

Source Type

Tokyo, Japan

The present invention relates to an infrared reflecting blue pigment comprising a composite oxide comprising Co, Al and Mg, wherein a content of Mg in the blue pigment is 11 to 22% in terms of a molar ratio thereof based on whole metal element present in the blue pigment, and the blue pigment has a BET specific surface area of 10 to 100 m


The present invention relates to ferrite particles for bonded magnet, having a volume-average particle diameter of 2.1 to 2.7 m and a particle diameter 90 of 4.3 to 5.4 m wherein the 90 represents a particle diameter at which a cumulative percentage of particles under sieve (undersize particles) based on a volume thereof is 90%, when determined from a particle size distribution thereof measured by using a laser diffraction type particle size distribution measuring apparatus.


An object of the present invention is to enhance a coercive force of magnetic particles by promoting formation of a continuous R-rich grain boundary phase in a crystal grain boundary of a magnetic phase of the particles, and to thereby obtain R-T-B-based rare earth magnet particles further having a high residual magnetic flux density. The present invention relates to production of R-T-B-based rare earth magnet particles capable of exhibiting a high coercive force even when a content of Al therein is reduced, and a high residual magnetic flux density, in which formation of an R-rich grain boundary phase therein can be promoted by heat-treating Al-containing R-T-B-based rare earth magnet particles obtained by HDDR treatment in vacuum or in an Ar atmosphere at a temperature of not lower than 670 C. and not higher than 820 C. for a period of not less than 30 min and not more than 300 min.


The present invention relates to ferrite particles for bonded magnets and a resin composition for bonded magnets which can provide a bonded magnet molded product capable of realizing a high magnetic force and a complicated multipolar waveform owing to such a feature that the ferrite particles are readily and highly oriented against an external magnetic field in a flowing resin upon injection molding, as well as a bonded magnet molded product obtained by injection-molding the above composition. According to the present invention, there are provided ferrite particles for bonded magnets which have a crystallite size of not less than 500 nm as measured in an oriented state by XRD, and an average particle diameter of not less than 1.30 m as measured by Fisher method; a resin composition for bonded magnets; and a molded product obtained by injection-molding the composition.


The present invention relates to a magnetic particle-containing water dispersion wherein the magnetic particles have a primary particle diameter of 5 to 15 nm and an average secondary particle diameter of 10 to 60 nm, and the water dispersion has a zeta potential of not more than 20 mV when a pH value of the water dispersion lies within the range of 6 to 8, and further a surface of the respective magnetic particles is coated with a carboxyl group-containing polymer. The magnetic particle-containing water dispersion is produced by heating an aqueous solution in which the carboxyl group-containing polymer is dissolved, to a temperature of 90 to 100 C. in a nitrogen atmosphere; adding a solution of a ferrous (II) salt and a ferric (III) salt and an alkali solution to the aqueous solution to react with each other at the same temperature; adding ethanol to the solution to obtain a precipitate; and removing a supernatant liquid from the solution, and then dispersing the precipitate in water and subjecting the resulting dispersion to dialysis. The magnetic particle-containing water dispersion is useful as a magnetic particle-containing water dispersion capable of producing magnetic particle-containing drugs for diagnosis and therapies which can exhibit a uniform functionality, with a good reproducibility.

Discover hidden collaborations