Entity

Time filter

Source Type

Mount, Australia

Rezaei S.D.,Burnet Institute | Rezaei S.D.,Monash University | Hearps A.C.,Burnet Institute | Hearps A.C.,Monash University | And 5 more authors.
Virology Journal | Year: 2013

Background: Xenotropic murine leukemia virus-related virus (XMRV) is a gammaretrovirus reported to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS). While the association of XMRV with CFS and PC has recently been discredited, no studies have been performed in Australian patients to investigate the association between PC and XMRV or related murine leukemia virus (MLV) in matched PC and normal tissue.Methods: Genomic DNA (gDNA) was purified from matched normal and cancer formalin-fixed paraffin-embedded (FFPE) prostate tissue from 35 Australian PC patients with Gleason scores ranging from 7 -10. The presence of the ribonuclease L (RNase L) polymorphism R462Q was determined by allele specific PCR. Samples were screened for XMRV and related murine leukemia virus (MLV) variants by qPCR. Contaminating mouse DNA was detected using qPCR targeting mouse intracisternal A particle long terminal repeat DNA.Results: gDNA was successfully purified from 94% (66/70) of normal and cancer FFPE prostate tissues. RNase L typing revealed 8% were homozygous (QQ), 60% were heterozygous (RQ) and 32% were wild-type (RR) for the RNase L mutation. None of the 66 samples tested were positive for XMRV or related MLV sequences using broad MLV or XMRV specific primers with detection sensitivities of 1 viral copy of MLV/XMRV and XMRV DNA, respectively.Conclusions: Using highly sensitive qPCR we found no evidence of XMRV or related gammaretroviruses in prostate tissues from 35 Australian PC patients. Our findings are consistent with other studies demonstrating that XMRV is a laboratory contaminant that has no role in the aetiology of PC. © 2013 Rezaei et al.; licensee BioMed Central Ltd. Source


Pearson H.B.,Peter MacCallum Cancer Center | Perez-Mancera P.A.,Cambridge Research Institute | Dow L.E.,Peter MacCallum Cancer Center | Dow L.E.,Cold Spring Harbor Laboratory | And 10 more authors.
Journal of Clinical Investigation | Year: 2011

Loss of cellular polarity is a hallmark of epithelial cancers, raising the possibility that regulators of polarity have a role in suppressing tumorigenesis. The Scribble complex is one of at least three interacting protein complexes that have a critical role in establishing and maintaining epithelial polarity. In human colorectal, breast, and endometrial cancers, expression of the Scribble complex member SCRIB is often mislocalized and deregulated. Here, we report that Scrib is indispensable for prostate homeostasis in mice. Scrib heterozygosity initiated prostate hyperplasia, while targeted biallelic Scrib loss predisposed mice to prostate intraepithelial neoplasia. Mechanistically, Scrib was shown to negatively regulate the MAPK cascade to suppress tumorigenesis. Further analysis revealed that prostate-specific loss of Scrib in mice combined with expression of an oncogenic Kras mutation promoted the progression of prostate cancer that recapitulated the human disease. The clinical significance of the work in mice was highlighted by our observation that SCRIB deregulation strongly correlated with poor survival in human prostate cancer. These data suggest that the polarity network could provide a new avenue for therapeutic intervention. Source


Ellem S.J.,Monash University | Taylor R.A.,Monash University | Furic L.,Monash University | Larsson O.,Karolinska Institutet | And 8 more authors.
Journal of Pathology | Year: 2014

Prostate cancer is hormone-dependent and regulated by androgens as well as oestrogens. The tumour microenvironment also provides regulatory control, but the balance and interplay between androgens and oestrogens at the human prostate tumour interface is unknown. This study reveals a central and dominant role for oestrogen in the microenvironment, fuelling a pro-tumourigenic loop of inflammatory cytokines involving recruitment of mast cells by carcinoma-associated fibroblasts (CAFs). Mast cell numbers were increased in human PCa clinical specimens, specifically within the peritumoural stroma. Human mast cells were also shown to express ERα and ERβ, with oestradiol directly stimulating mast cell proliferation and migration as well as altered cytokine/chemokine expression. There was a significant shift in the oestrogen:androgen balance in CAFs versus normal prostatic fibroblasts (NPFs), with a profound increase to ER:AR expression. Androgen signalling is also reduced in CAFs, while ERα and ERβ transcriptional activity is not, allowing oestrogen to dictate hormone action in the tumour microenvironment. Gene microarray analyses identified CXCL12 as a major oestrogen-driven target gene in CAFs, and CAFs recruit mast cells via CXCL12 in a CXCR4-dependent manner. Collectively, these data reveal multicellular oestrogen action in the tumour microenvironment and show dominant oestrogen, rather than androgen, signalling at the prostatic tumour interface. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Source


Hunter S.M.,Center for Cancer Genomics and Predictive Medicine | Rowley S.M.,Center for Cancer Genomics and Predictive Medicine | Clouston D.,TissuPath | Li J.,Peter MacCallum Cancer Center | And 9 more authors.
Urologic Oncology: Seminars and Original Investigations | Year: 2016

Objective: A family history of prostate cancer (PC) is a well-recognized high-risk factor for the development of clinically significant PC. To date, traditional linkage and association studies have identified only a limited number of genes and specific gene variants that account for only a small proportion of PC risk. To identify novel PC predisposition genes we performed whole-exome sequencing of PC-affected men from families with a significant history of PC. Methods and materials: Exome sequencing was performed on 5 PC-affected men from 3 families where there were multiple cases of PCs and where diagnostic testing returned a negative result for BRCA1 and BRCA2 mutations. Genotyping was performed for all potentially predisposing variants detected within each family on the affected and unaffected male participants. Results: Essential splice site, missense, and stop-lost variants were filtered against a recently published candidate gene list. A total of 19 truncating variants and 17 missense variants were identified for genotyping in all prostate-affected and unaffected male participants. In all, 3 missense variants, PCTP, MCRS1, and ATRIP, demonstrated complete segregation and 1 missense variant, PARP2, demonstrated partial segregation with PC. In addition, 3 truncating variants, CYP3A43, DOK3, and PLEKHH3, demonstrated complete segregation and 3 truncation mutations, HEATR5B, GPR124, and HKR1, demonstrated partial segregation with PC. No segregating variants between the 3 families were shared. Conclusions: In all, 10 truncating or missense variants showed either complete or partial segregation with PC in the relevant families. CYP3A43 and PARP2 variants have been shown to occur in other familial PCs and our findings add to the contribution that these variants potentially have in the risk and development of PC in BRCAX cases. © 2016 Elsevier Inc. Source


Risbridger G.P.,Monash University | Taylor R.A.,Monash University | Clouston D.,TissuPath | Sliwinski A.,University of Melbourne | And 14 more authors.
European Urology | Year: 2015

Background Intraductal carcinoma of the prostate (IDC-P) is a distinct clinicopathologic entity associated with aggressive prostate cancer (PCa). PCa patients carrying a breast cancer 2, early onset (BRCA2) germline mutation exhibit highly aggressive tumours with poor prognosis. Objective To investigate the presence and implications of IDC-P in men with a strong family history of PCa who either carry a BRCA2 pathogenic mutation or do not carry the mutation (BRCAX). Design, setting, and participants Patient-derived xenografts (PDXs) were generated from three germline BRCA2 mutation carriers and one BRCAX patient. Specimens were examined for histologic evidence of IDC-P. Whole-genome copy number analysis (WG-CNA) was performed on IDC-P from a primary and a matched PDX specimen. Outcome measurements and statistical analysis The incidence of IDC-P and association with overall survival for BRCA2 and BRCAX patients were determined using Kaplan-Meier analysis. Results and limitations PDXs from BRCA2 tumours showed increased incidence of IDC-P compared with sporadic PCa (p = 0.015). WG-CNA confirmed that the genetic profile of IDC-P from a matched (primary and PDX) BRCA2 tumour was similar. The incidence of IDC-P was significantly increased in BRCA2 carriers (42%, n = 33, p = 0.004) but not in BRCAX patients (25.8%, n = 62, p = 0.102) when both groups were compared with sporadic cases (9%, n = 32). BRCA2 carriers and BRCAX patients with IDC-P had significantly worse overall and PCa-specific survival compared with BRCA2 carriers and BRCAX patients without IDC-P (hazard ratio [HR]: 16.9, p = 0.0064 and HR: 3.57, p = 0.0086, respectively). Conclusions PDXs revealed IDC-P in patients with germline BRCA2 mutations or BRCAX classification, identifying aggressive tumours with poor survival even when the stage and grade of cancer at diagnosis were similar. Further studies of the prognostic significance of IDC-P in sporadic PCa are warranted. Patient summary Intraductal carcinoma of the prostate is common in patients with familial prostate cancer and is associated with poor outcomes. This finding affects genetic counselling and identifies patients in whom earlier multimodality treatment may be required. © 2014 European Association of Urology. Source

Discover hidden collaborations