Entity

Time filter

Source Type

Oviedo, Spain

Ruiter M.S.,University of Amsterdam | Ruiter M.S.,Tissue Engineering Unit | Van Tiel C.M.,University of Amsterdam | Doornbos A.,InnoCore Pharmaceuticals | And 8 more authors.
PLoS ONE | Year: 2015

Background The introduction of drug-eluting stents (DES) has dramatically reduced restenosis rates compared with bare metal stents, but in-stent thrombosis remains a safety concern, necessitating prolonged dual anti-platelet therapy. The drug 6-Mercaptopurine (6-MP) has been shown to have beneficial effects in a cell-specific fashion on smooth muscle cells (SMC), endothelial cells and macrophages. We generated and analyzed a novel bioresorbable polymer coated DES, releasing 6-MP into the vessel wall, to reduce restenosis by inhibiting SMC proliferation and decreasing inflammation, without negatively affecting endothelialization of the stent surface. Methods Stents spray-coated with a bioresorbable polymer containing 0, 30 or 300 μg 6-MP were implanted in the iliac arteries of 17 male New Zealand White rabbits. Animals were euthanized for stent harvest 1 week after implantation for evaluation of cellular stent coverage and after 4 weeks for morphometric analyses of the lesions. Results Four weeks after implantation, the high dose of 6-MP attenuated restenosis with 16% compared to controls. Reduced neointima formation could at least partly be explained by an almost 2-fold induction of the cell cycle inhibiting kinase p27Kip1. Additionally, inflammation score, the quantification of RAM11-positive cells in the vessel wall, was significantly reduced in the high dose group with 23% compared to the control group. Evaluation with scanning electron microscopy showed 6-MP did not inhibit strut coverage 1 week after implantation. Conclusion We demonstrate that novel stents coated with a bioresorbable polymer coating eluting 6- MP inhibit restenosis and attenuate inflammation, while stimulating endothelial coverage. The 6-MP-eluting stents demonstrate that inhibition of restenosis without leaving uncovered metal is feasible, bringing stents without risk of late thrombosis one step closer to the patient. © 2015 Ruiter et al. Source


Puig-Butille J.A.,IDIBAPS Institute dInvestigacions Biomediques Agusti Pi i Sunyer | Puig-Butille J.A.,Research Center Biomedica En Red Of Enfermedades Raras Ciberer | Escamez M.J.,CIEMAT | Escamez M.J.,Charles III University of Madrid | And 22 more authors.
Oncotarget | Year: 2014

Germline mutations in CDKN2A and/or red hair color variants in MC1R genes are associated with an increased susceptibility to develop cutaneous melanoma or non melanoma skin cancer. We studied the impact of the CDKN2A germinal mutation p.G101W and MC1R variants on gene expression and transcription profiles associated with skin cancer. To this end we set-up primary skin cell co-cultures from siblings of melanoma prone-families that were later analyzed using the expression array approach. As a result, we found that 1535 transcripts were deregulated in CDKN2A mutated cells, with over-expression of immunity-related genes (HLA-DPB1, CLEC2B, IFI44, IFI44L, IFI27, IFIT1, IFIT2, SP110 and IFNK) and down-regulation of genes playing a role in the Notch signaling pathway. 3570 transcripts were deregulated in MC1R variant carriers. In particular, genes related to oxidative stress and DNA damage pathways were up-regulated as well as genes associated with neurodegenerative diseases such as Parkinson's, Alzheimer and Huntington. Finally, we observed that the expression signatures indentified in phenotypically normal cells carrying CDKN2A mutations or MC1R variants are maintained in skin cancer tumors (melanoma and squamous cell carcinoma). These results indicate that transcriptome deregulation represents an early event critical for skin cancer development. Source


Guerrero-Aspizua S.,CIEMAT | Garcia M.,CIEMAT | Murillas R.,CIEMAT | Retamosa L.,CIEMAT | And 12 more authors.
American Journal of Pathology | Year: 2010

Over the past few years, whole skin xenotransplantation models that mimic different aspects of psoriasis have become available. However, these models are strongly constrained by the lack of skin donor availability and homogeneity. We present in this study a bioengineering-based skin-humanized mouse model for psoriasis, either in an autologous version using samples derived from psoriatic patients or, more importantly, in an allogeneic context, starting from skin biopsies and blood samples from unrelated healthy donors. After engraftment, the regenerated human skin presents the typical architecture of normal human skin but, in both cases, immunological reconstitution through intradermal injection in the regenerated skin using in vitro-differentiated T1 subpopulations as well as recombinant IL-17 and IL-22 Th17 cytokines, together with removal of the stratum corneum barrier by a mild abrasive treatment, leads to the rapid conversion of the skin into a bona fide psoriatic phenotype. Major hallmarks of psoriasis were confirmed by the evaluation of specific epidermal differentiation and proliferation markers as well as the mesenchymal milieu, including angiogenesis and infiltrate. Our bioengineered skin-based system represents a robust platform to reliably assess the molecular and cellular mechanisms underlying the complex interdependence between epidermal cells and the immune system. The system may also prove suitable to assess preclinical studies that test the efficacy of novel therapeutic treatments and to predict individual patient response to therapy. Copyright © American Society for Investigative Pathology. Source


Llames S.,Tissue Engineering Unit | Garcia E.,Tissue Engineering Unit | Otero Hernandez J.,Hospital Universitario Central Of Asturias | Meana A.,Tissue Engineering Unit
Advances in Experimental Medicine and Biology | Year: 2012

The scarcity of organs and tissues for transplant and the need of immunosuppressive drugs to avoid rejection constitute two reasons that justify organ and tissue production in the laboratory. Tissue engineering based tissues (TE) could allow to regenerate the whole organ from a fragment or even to produce several organs from an organ donor for grafting purposes. TE is based in: (1) the ex vivo expansion of cells, (2) the seeding of these expanded cells in tridimensional structures that mimic physiological conditions and, (3) grafting the prototype. In order to graft big structures it is necessary that the organ or tissue produced "ex vivo" bears a vascular tree to ensure the nutrition of its deep layers. At present, no technology has been developed to provide this vascular tree to TE derived products. Thus, these tissues must be thin enough to acquire nutrients during the first days by diffusion from surrounding tissues. This fact constitutes nowadays the greatest limitation of technologies for organ development in the laboratory. In this chapter, all these problems and their possible solutions are commented. Also, the present status of TE techniques in the regeneration of different organ systems is reviewed. © 2012 Landes Bioscience and Springer Science+Business Media. Source


Martinez-Santamaria L.,Charles III University of Madrid | Martinez-Santamaria L.,CIEMAT | Martinez-Santamaria L.,Center for Biomedical Research on Rare Diseases | Conti C.J.,Texas A&M University | And 27 more authors.
Experimental Dermatology | Year: 2013

Cutaneous diabetic wounds greatly affect the quality of life of patients, causing a substantial economic impact on the healthcare system. The limited clinical success of conventional treatments is mainly attributed to the lack of knowledge of the pathogenic mechanisms related to chronic ulceration. Therefore, management of diabetic ulcers remains a challenging clinical issue. Within this context, reliable animal models that recapitulate situations of impaired wound healing have become essential. In this study, we established a new in vivo humanised model of delayed wound healing in a diabetic context that reproduces the main features of the human disease. Diabetes was induced by multiple low doses of streptozotocin in bioengineered human-skin-engrafted immunodeficient mice. The significant delay in wound closure exhibited in diabetic wounds was mainly attributed to alterations in the granulation tissue formation and resolution, involving defects in wound bed maturation, vascularisation, inflammatory response and collagen deposition. In the new model, a cell-based wound therapy consisting of the application of plasma-derived fibrin dermal scaffolds containing fibroblasts consistently improved the healing response by triggering granulation tissue maturation and further providing a suitable matrix for migrating keratinocytes during wound re-epithelialisation. The present preclinical wound healing model was able to shed light on the biological processes responsible for the improvement achieved, and these findings can be extended for designing new therapeutic approaches with clinical relevance. © 2013 John Wiley & Sons A/S. Source

Discover hidden collaborations