Entity

Time filter

Source Type


Xia P.,Northwest Agriculture and Forestry University | Guo H.,Northwest Agriculture and Forestry University | Liang Z.,Northwest Agriculture and Forestry University | Cui X.,Wenshan Institute of Sanchi Ginseng | And 2 more authors.
Genetic Resources and Crop Evolution | Year: 2014

Sanchi (Panax notoginseng) root has been widely used as traditional herb to stanch blood, disperse gore and reduce pain in China for centuries. However, the nutritional information about its seed was unknown. Sanchi seeds obtained from Yunnan Province were analyzed for their nutritional composition, fatty acid, amino acid profile and sugar contents. Sanchi seeds were abundant in fats (46.35 %) and proteins (23.90 %). Notably, seven fatty acid compositions were determined and abundant in unsaturated fatty acid (99.56 %), containing 95.71 % oleic acid. Sanchi seed proteins were rich in glutenin, globulin and albumin (28.63, 27.83 and 26.81 %, respectively). Sanchi seed contain 17 kinds of amino acids, of which nine were essential amino acids, accounting for 41.30 %. These nutritional compositions indicate that Sanchi seed has the potentiality to be exploited as human edible oil, industrial use, new medicine or healthcare products for diabetes patients due to low sugar content. © 2014, Springer Science+Business Media Dordrecht. Source


Yang D.,Zhejiang Sci-Tech University | Du X.,Zhejiang Sci-Tech University | Yang Z.,Zhejiang Sci-Tech University | Liang Z.,Zhejiang Sci-Tech University | And 2 more authors.
Engineering in Life Sciences | Year: 2014

Plant secondary metabolites play an important role in the fields of food, medicine, agriculture, and biofuels. Secondary metabolites are an important focus of crop breeding and metabolic engineering research. However, our understanding of secondary metabolism is far from complete, particularly in nonmodel plants. Functional genomics, which includes transcriptomics, proteomics, and metabolomics, opens a new avenue for deciphering secondary metabolism. Here we review the applications of functional genomics in secondary metabolism, including the discovery of novel genes, the identification of gene function, and the detection of novel pathways of the metabolic network. Results from these studies will accelerate our understanding of elicitation mechanism of secondary metabolism and how plants interact with their environment, ultimately improving the production of secondary metabolites by means of metabolic engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source


Yang D.,Northwest University, China | Ma P.,Northwest University, China | Liang X.,Northwest University, China | Liang Z.,Northwest University, China | And 5 more authors.
PLoS ONE | Year: 2012

Plants of the genus Salvia produce various types of phenolic compounds and tanshinones which are effective for treatment of coronary heart disease. Salvia miltiorrhiza and S. castanea Diels f. tomentosa Stib are two important members of the genus. In this study, metabolic profiles and cDNA-AFLP analysis of four samples were employed to identify novel genes potentially involved in phenolic compounds and tanshinones biosynthesis, including the red roots from the two species and two tanshinone-free roots from S. miltiorrhiza. The results showed that the red roots of S. castanea Diels f. tomentosa Stib produced high contents of rosmarinic acid (21.77 mg/g) and tanshinone IIA (12.60 mg/g), but low content of salvianolic acid B (1.45 mg/g). The red roots of S. miltiorrhiza produced high content of salvianolic acid B (18.69 mg/g), while tanshinones accumulation in this sample was much less than that in S. castanea Diels f. tomentosa Stib. Tanshinones were not detected in the two tanshinone-free samples, which produced high contents of phenolic compounds. A cDNA-AFLP analysis with 128 primer pairs revealed that 2300 transcript derived fragments (TDFs) were differentially expressed among the four samples. About 323 TDFs were sequenced, of which 78 TDFs were annotated with known functions through BLASTX searching the Genbank database and 14 annotated TDFs were assigned into secondary metabolic pathways through searching the KEGGPATHWAY database. The quantitative real-time PCR analysis indicated that the expression of 9 TDFs was positively correlated with accumulation of phenolic compounds and tanshinones. These TDFs additionally showed coordinated transcriptional response with 6 previously-identified genes involved in biosynthesis of tanshinones and phenolic compounds in S. miltiorrhiza hairy roots treated with yeast extract. The sequence data in the present work not only provided us candidate genes involved in phenolic compounds and tanshinones biosynthesis but also gave us further insight into secondary metabolism in Salvia. © 2012 Yang et al. Source


Yang D.,Northwest University, China | Sheng D.,Zhoukou Normal University | Duan Q.,Northwest University, China | Liang X.,Northwest University, China | And 3 more authors.
Journal of Plant Growth Regulation | Year: 2012

Salvia miltiorrhiza is one of the most popular traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Tanshinones, a group of active compounds in S. miltiorrhiza, are derived from two biosynthetic pathways: the mevalonate (MVA) pathway in the cytosol and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway in the plastids. Water stress is well known to stimulate the accumulation of secondary metabolites in plants. Reactive oxygen species (ROS) serve as important secondary messengers in water stress-induced signal transduction pathways. In this study, the effects of polyethylene glycol (PEG) and abscisic acid (ABA) on tanshinone production in S. miltiorrhiza hairy roots were investigated and the roles of ROS in PEG- and ABA-induced tanshinone production were further elucidated. The results showed that contents and yields of four tanshinones in S. miltiorrhiza hairy roots were significantly enhanced by 2 % PEG and 200 μM ABA. Simultaneously, the mRNA levels and activities of two key enzymes (3-hydroxy-3-methylglutaryl coenzyme A reductase and 1-deoxy-D-xylulose 5-phosphate synthase) involved in tanshinone biosynthesis were upregulated. Both PEG and ABA were able to trigger the burst of H 2O 2 and O 2 -. The PEG- and ABA-induced increases of tanshinone production, gene expression, and enzyme activity were all dramatically suppressed by two ROS scavengers, catalase and superoxide dismutase. In addition, ROS treatments resulted in a significant increase in tanshinone production. These results demonstrated that the MVA and MEP pathways were activated by PEG and ABA to stimulate tanshinone biosynthesis, and the increase of tanshinone production was probably via ROS signaling. © 2012 Springer Science+Business Media, LLC. Source


Yang D.,Northwest University, China | Ma P.,Northwest University, China | Liang X.,Northwest University, China | Wei Z.,Northwest University, China | And 4 more authors.
Physiologia Plantarum | Year: 2012

Tanshinones, a group of active ingredients in Salvia miltiorrhiza, are derived from at least two biosynthetic pathways, which are the mevalonate (MVA) pathway in the cytosol and the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway in the plastids. Abscisic acid (ABA) and methyl jasmonate (MJ) are two well-known plant hormones induced by water stress. In this study, effects of polyethylene glycol (PEG), ABA and MJ on tanshinone production in S. miltiorrhiza hairy roots were investigated, and the role of MJ in PEG- and ABA-induced tanshinone production was further elucidated. The results showed that tanshinone production was significantly enhanced by treatments with PEG, ABA and MJ. The mRNA levels of 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGR), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) and 1-deoxy-d-xylulose 5-phosphate synthase (DXS), as well as the enzyme activities of HMGR and DXS were stimulated by all three treatments. PEG and ABA triggered MJ accumulation. Effects of PEG and ABA on tanshinone production were completely abolished by the ABA biosynthesis inhibitor [tungstate (TUN)] and the MJ biosynthesis inhibitor [ibuprofen (IBU)], while effects of MJ were almost unaffected by TUN. In addition, MJ-induced tanshinone production was completely abolished by the MEP pathway inhibitor [fosmidomycin (FOS)], but was just partially arrested by the MVA pathway inhibitor [mevinolin (MEV)]. In conclusion, a signal transduction model was proposed that exogenous applications of PEG and ABA triggered endogenous MJ accumulation by activating ABA signaling pathway to stimulate tanshinone production, while exogenous MJ could directly induce tanshinone production mainly via the MEP pathway in S. miltiorrhiza hairy roots. © 2012 Physiologia Plantarum. Source

Discover hidden collaborations