Tianjin JF Pharmaland Technology Development Co.

Tianjin, China

Tianjin JF Pharmaland Technology Development Co.

Tianjin, China
SEARCH FILTERS
Time filter
Source Type

Zhuang P.,Tianjin University of Traditional Chinese Medicine | Zhuang P.,Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections | Zhuang P.,Tianjin Tasliy Pride Pharmaceutical Co. | Zhuang P.,Tianjin JF Pharmaland Technology Development Co. | And 13 more authors.
Journal of Ethnopharmacology | Year: 2017

Background Inflammatory reactions induced by microglia in the brain play crucial roles in ischemia/reperfusion (I/R) cerebral injuries. Microglia activation has been shown to be closely related to TLR4/NF-κB signal pathways. Salvianolic acids for injection (SAFI) have been used in clinical practice to treat ischemic stroke with reported neuroprotective effects; however, the underlying mechanisms are still uncertain. Objective and Methods First, we studied the effect of SAFI on inflammatory responses in LPS-stimulated BV-2 microglia. Then, to discover whether the beneficial in vitro effects of SAFI lead to in vivo therapeutic effects, an MCAO (Middle cerebral artery occlusion) rat model was further employed to elucidate the probable mechanism of SAFI in treating ischemic stroke. Rats in the SAFI group were given SAFI (23 or 46 mg/kg) before I/R injury. Results The results showed that SAFI treatment significantly decreased neuroinflammation and the infarction volume compared with the vehicle group. Activation of microglia cells was reduced, and TLR4/NF-κB signals, which were markedly inhibited by SAFI treatment in ischemic hemisphere, were accompanied by reduced expression and release of cytokines IL-1β and IL-6. Conclusion This study provides evidence that SAFI effectively protects the brain after cerebral ischemia, which may be caused by attenuating inflammation in microglia. © 2017 Elsevier Ireland Ltd


Song L.,Tianjin University of Traditional Chinese Medicine | Liu H.,Tianjin University of Traditional Chinese Medicine | Wang Y.,Tianjin University of Traditional Chinese Medicine | Liu J.,Tianjin University of Technology | And 5 more authors.
Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences | Year: 2015

A protocol for metabolic profiling of mice urine was developed based on gas chromatograph-mass spectrometer (GC-MS) to explore metabolic state directly. The intra-day, inter-day, repeatability, and stability RSD for most endogenous compounds were less than 3%. Type 2 diabetic mellitus (T2DM) mice model was induced by high calorie diet combined with streptozocin. Urine from the control, T2DM and Huangbai-Zhimu herb-pair (HZ) treatment mice were enrolled in the subsequent study to show the usefulness of the method. OPLS-DA scores plots demonstrate that the cluster of T2DM mice is separated from that of control mice, while HZ-T2DM mice are located close to control mice, indicating that metabolic profiles of these HZ-T2DM mice are placed toward those of control group. The results illustrate that HZ treatment could lower the level of d-glucose, hexadecanoic acid, octadecanoic acid, propanoic acid, 3-hydroxybutyric acid, and 2,3-dihydroxybutanoic acid in urine of DM mice, meanwhile the results show that HZ treatment could ameliorate T2DM symptoms by intervening the fatty acid metabolism, starch and sucrose metabolism, and glyoxylate and dicarboxylate metabolism. This preliminary application indicated that the method is suitable and reliable for urine metabolic profiling. This study might explain the metabolic effects of T2DM and the mechanisms of action of HZ against T2DM. © 2015 Elsevier B.V.


PubMed | Tianjin University of Traditional Chinese Medicine, Tianjin JF Pharmaland Technology Development Co. and Tianjin Key Laboratory of Safety Evaluation Enterprise of TCM Injections Tianjin. 300410
Type: | Journal: Journal of ethnopharmacology | Year: 2017

Inflammatory reactions induced by microglia in the brain play crucial roles in ischemia/reperfusion (I/R) cerebral injuries. Microglia activation has been shown to be closely related to TLR4/NF-B signal pathways. Salvianolic acids for injection (SAFI) have been used in clinical practice to treat ischemic stroke with reported neuroprotective effects; however, the underlying mechanisms are still uncertain.First, we studied the effect of SAFI on inflammatory responses in LPS-stimulated BV-2 microglia. Then, to discover whether the beneficial in vitro effects of SAFI lead to in vivo therapeutic effects, an MCAO (Middle cerebral artery occlusion) rat model was further employed to elucidate the probable mechanism of SAFI in treating ischemic stroke. Rats in the SAFI group were given SAFI (23 or 46mg/kg) before I/R injury.The results showed that SAFI treatment significantly decreased neuroinflammation and the infarction volume compared with the vehicle group. Activation of microglia cells was reduced, and TLR4/NF-B signals, which were markedly inhibited by SAFI treatment in ischemic hemisphere, were accompanied by reduced expression and release of cytokines IL-1 and IL-6.This study provides evidence that SAFI effectively protects the brain after cerebral ischemia, which may be caused by attenuating inflammation in microglia.


Zhang J.,Tianjin University of Traditional Chinese Medicine | Zhuang P.,Tianjin University of Traditional Chinese Medicine | Zhuang P.,Tianjin JF Pharmaland Technology Development Co. | Wang Y.,Tianjin University of Traditional Chinese Medicine | And 9 more authors.
PLoS ONE | Year: 2014

Skeletal muscle atrophy is one of the serious complications of diabetes. Zhimu-Huangbai herb-pair (ZB) is widely used in Chinese traditional medicine formulas for treating Xiaoke (known as diabetes) and its complications. However, the effect of ZB on reversal of muscle atrophy and the underlying mechanisms remain unknown. In this research, we investigated the effect and possible mechanisms of ZB on skeletal muscle atrophy in diabetic mice. Animal model of diabetic muscle atrophy was developed by high fat diet (HFD) feeding plus streptozotocin (STZ) injection. After oral adminstration of ZB for 6 weeks, the effects of ZB on reversal of muscle atrophy and the underlying mechanisms were evaluated by biochemical, histological and western blot methods. The skeletal muscle weight, strength, and cross-sectional area of diabetic mice were significantly increased by ZB treatment. Biochemical results showed that ZB treatment reduced the serum glucose level, and elevated the serum insulin-like growth factor 1 (IGF-1) and insulin levels significantly compared with untreated diabetic group. The western blot results showed that ZB activated the mTOR signal pathway, shown as increased phosphorylations (p-) of Akt, mTOR, Raptor, S6K1 and reduced Foxo3 expression compared with the model group. ZB could reverse muscle atrophy in diabetic mice. This may be through activation of mTOR signaling pathway that promotes protein synthesis, and inactivation foxo3 protein that inhibits protein degradation. These findings suggested that ZB may be considered as a potential candidate drug in treatment of diabetic muscle atrophy. © 2014 Zhang et al.


Zhuang P.,Tianjin University of Traditional Chinese Medicine | Zhuang P.,Tianjin JF Pharmaland Technology Development Co. | Zhang J.,Tianjin University of Traditional Chinese Medicine | Zhang J.,Lanzhou University | And 10 more authors.
Supportive Care in Cancer | Year: 2016

Purpose: Muscle atrophy is the prominent clinical feature of cancer-induced cachexia. Zhimu and Huangbai herb pair (ZBHP) has been used since ancient China times and have been phytochemically investigated for constituents that might cause anti-cancer, diabetes, and their complication. In this study, the effects and mechanisms of ZBHP on reversal of muscle atrophy were explored. Methods: C57BL/6 mice implanted with colon-26 adenocarcinoma were chosen to develop cancer cachexia for evaluating the effects of ZBHP on reversal of muscle atrophy. The body weight, survival time, inflammatory cytokines, and pathological changes of muscle were monitored. In addition, IGF-1/Akt and autophagy pathway members were analyzed to interpret the mechanism of drug response. Results: The function and morphology of skeletal muscle in cachexia model were significantly disturbed, and the survival time was shortened. Consistently, inflammatory cytokines and muscle atrophy-related atrogin-1, MuRF1, and FOXO3 were significantly increased, and IGF-1/Akt and autophagy signal pathways were depressed. Treatment with ZBHP significantly alleviated tumor-free body weight reduction and cachexia-induced changes in cytokines and prolonged survival. ZBHP treatment not only inhibited the muscle atrophy-related genes but also activated the IGF-1/Akt and autophagy signal pathways to facilitate the protein synthesis. Conclusions: The results revealed that ZBHP treatment could inhibit the muscle atrophy induced by cancer cachexia and prolong the survival time, and ZBHP may be of value as a pharmacological alternative in treatment of cancer cachexia. © 2015, Springer-Verlag Berlin Heidelberg.


Yang Z.,Tianjin University of Traditional Chinese Medicine | Lu Z.-Q.,Tianjin University of Traditional Chinese Medicine | Zhang Y.-J.,Tianjin University of Traditional Chinese Medicine | Li Y.-B.,Tianjin University of Traditional Chinese Medicine | And 5 more authors.
Journal of Asian Natural Products Research | Year: 2015

More and more studies demonstrated that β2 adrenergic receptor (β2-AR) plays a crucial role for the treatment of heart failure. Chuanwu and Fuzi have been used over thousands of years in China for the treatment of heart failure. Considering the effects of these herbs are very similar to β2-AR agonists, we presume whether β2-AR agonists can be found from Fuzi and Chuanwu. Fuzi and Chuanwu decoction were used to receive the luciferase reporter activity assay to verify the hypothesis, and the result is positive and encouraging. For it is very difficult to get all of the monomer compounds of Fuzi and Chuanwu, virtual screening was used to find potential β2-AR agonists and a cell-based β2-AR agonist functional evaluation model, combined with a luciferase reporter assay system, was used to confirm the final result. In this research, 45 compounds were identified as β2-AR agonists, and four compounds were verified and the rest need further experiment. © 2015 Taylor & Francis


PubMed | Tianjin University of Traditional Chinese Medicine and Tianjin JF Pharmaland Technology Development Co.
Type: Journal Article | Journal: Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer | Year: 2016

Muscle atrophy is the prominent clinical feature of cancer-induced cachexia. Zhimu and Huangbai herb pair (ZBHP) has been used since ancient China times and have been phytochemically investigated for constituents that might cause anti-cancer, diabetes, and their complication. In this study, the effects and mechanisms of ZBHP on reversal of muscle atrophy were explored.C57BL/6 mice implanted with colon-26 adenocarcinoma were chosen to develop cancer cachexia for evaluating the effects of ZBHP on reversal of muscle atrophy. The body weight, survival time, inflammatory cytokines, and pathological changes of muscle were monitored. In addition, IGF-1/Akt and autophagy pathway members were analyzed to interpret the mechanism of drug response.The function and morphology of skeletal muscle in cachexia model were significantly disturbed, and the survival time was shortened. Consistently, inflammatory cytokines and muscle atrophy-related atrogin-1, MuRF1, and FOXO3 were significantly increased, and IGF-1/Akt and autophagy signal pathways were depressed. Treatment with ZBHP significantly alleviated tumor-free body weight reduction and cachexia-induced changes in cytokines and prolonged survival. ZBHP treatment not only inhibited the muscle atrophy-related genes but also activated the IGF-1/Akt and autophagy signal pathways to facilitate the protein synthesis.The results revealed that ZBHP treatment could inhibit the muscle atrophy induced by cancer cachexia and prolong the survival time, and ZBHP may be of value as a pharmacological alternative in treatment of cancer cachexia.


PubMed | Tianjin University of Traditional Chinese Medicine and Tianjin JF Pharmaland Technology Development Co.
Type: Journal Article | Journal: PloS one | Year: 2014

Skeletal muscle atrophy is one of the serious complications of diabetes. Zhimu-Huangbai herb-pair (ZB) is widely used in Chinese traditional medicine formulas for treating Xiaoke (known as diabetes) and its complications. However, the effect of ZB on reversal of muscle atrophy and the underlying mechanisms remain unknown. In this research, we investigated the effect and possible mechanisms of ZB on skeletal muscle atrophy in diabetic mice. Animal model of diabetic muscle atrophy was developed by high fat diet (HFD) feeding plus streptozotocin (STZ) injection. After oral adminstration of ZB for 6 weeks, the effects of ZB on reversal of muscle atrophy and the underlying mechanisms were evaluated by biochemical, histological and western blot methods. The skeletal muscle weight, strength, and cross-sectional area of diabetic mice were significantly increased by ZB treatment. Biochemical results showed that ZB treatment reduced the serum glucose level, and elevated the serum insulin-like growth factor 1 (IGF-1) and insulin levels significantly compared with untreated diabetic group. The western blot results showed that ZB activated the mTOR signal pathway, shown as increased phosphorylations (p-) of Akt, mTOR, Raptor, S6K1 and reduced Foxo3 expression compared with the model group. ZB could reverse muscle atrophy in diabetic mice. This may be through activation of mTOR signaling pathway that promotes protein synthesis, and inactivation foxo3 protein that inhibits protein degradation. These findings suggested that ZB may be considered as a potential candidate drug in treatment of diabetic muscle atrophy.

Loading Tianjin JF Pharmaland Technology Development Co. collaborators
Loading Tianjin JF Pharmaland Technology Development Co. collaborators