Time filter

Source Type

Sha J.,Nankai University | Li Z.,Nankai University | Swaney D.P.,Cornell University | Hong B.,Cornell University | And 2 more authors.
Water Resources Management | Year: 2014

Excessive nitrogen loads and subsequent eutrophication risk have led to a series of critical water quality problems in Chinese watersheds. To address this issue, a modeling approach is useful for quantifying nitrogen sources, assessing source apportionment, and guiding management responses. In this study, we modeled the main hydrochemical processes of the Lian River watershed located in the south of China using the Regional Nutrient Management (ReNuMa) model, a model derived from the Generalized Watershed Loading Function (GWLF) model and incorporating Net Anthropogenic Nitrogen Inputs (NANI) to estimate runoff nitrogen concentrations. An informal Bayesian method, the Generalized Likelihood Uncertainty Estimation (GLUE) procedure, was applied for model calibration and uncertainty analysis. The resulting modeled monthly total nitrogen fluxes have high Nash-Sutcliff coefficients (>0.85) for the calibration (2005-2009) and verification (2003, 2004 and 2010) periods, representing an acceptable goodness-of-fit. The model outputs were further processed using multivariate statistical analysis to determine latent rules of nitrogen source apportionment under different circumstances, including different water regimes, seasonal patterns, and loading levels. The main nitrogen contributions in different natural and management-driven conditions have been identified, and appear to be significant for supporting decision-making priorities. We find that the ReNuMa model, with its Bayesian procedure and the linkage of subsequent multivariate statistical analysis, represents a useful approach with applicability within China and a great potential to be extended elsewhere. © Springer Science+Business Media Dordrecht 2014.

Zhao P.S.,Institute of Urban Meteorology | Dong F.,Institute of Urban Meteorology | He D.,Institute of Urban Meteorology | Zhao X.J.,Institute of Urban Meteorology | And 4 more authors.
Atmospheric Chemistry and Physics | Year: 2013

In order to study the temporal and spatial variations of PM2.5 and its chemical compositions in the region of Beijing, Tianjin, and Hebei (BTH), PM2.5 samples were collected at four urban sites in Beijing (BJ), Tianjin (TJ), Shijiazhuang (SJZ), and Chengde (CD), and also one site at Shangdianzi (SDZ) regional background station over four seasons from 2009 to 2010. The samples were weighted for mass concentrations and analyzed in the laboratory for chemical profiles of 19 elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, Sr, Ti, V, and Zn), eight water-soluble inorganic ions (Na+, NH4 +, K+, Mg 2+, Ca2+, Cl-, NO3 -, and SO4 2-), and carbon fractions (OC and EC). The concentrations of PM2.5 and its major chemical species were season dependent and showed spatially similar characteristics in the plain area of BTH. The average annual concentrations of PM2.5 were 71.8-191.2 μg m-3 at the five sites, with more than 90% of sampling days exceeding 50μgm-3 at BJ, TJ, and SJZ. PM2.5 pollution was most serious at SJZ, and the annual concentrations of PM2.5, secondary inorganic ions, OC, EC, and most crustal elements were all highest. Due to stronger photochemical oxidation, the sum of concentrations of secondary inorganic ions (NH4 +, NO3 -, and SO4 2-) was highest in the summer at SDZ, BJ, TJ, and CD. Analysis of electric charges of water-soluble inorganic ions indicated the existence of nitric acid or hydrochloric acid in PM2.5. For all five sites, the concentrations of OC, EC and also secondary organic carbon (SOC) in the spring and summer were lower than those in the autumn and winter. SOC had more percentages of increase than primary organic carbon (POC) during the winter. The sums of crustal elements (Al, Ca, Fe, Mg, Ti, Ba, and Sr) were higher in the spring and autumn owing to more days with blowing or floating dust. The concentrations of heavy metals were at higher levels in the BTH area by comparison with other studies. In Shijiazhuang and Chengde, the PM2.5 pollution was dominated by coal combustion. Motor vehicle exhausts and cos a al combustion emissions both played important roles in Tianjin PM2.5 pollution. However, motor vehicle exhausts had played a more important role in Beijing owing to the reduction of coal consumption and sharp increase of cars in recent years. At SDZ, regional transportation of air pollutants from southern urban areas was significant. © Author(s) 2013.

Quan J.,Beijing Weather Modification Office | Quan J.,Institute of Urban Meteorology | Gao Y.,Beijing Weather Modification Office | Zhang Q.,Beijing Weather Modification Office | And 7 more authors.
Particuology | Year: 2013

A field experiment was conducted in Tianjin, China from September 9-30, 2010, focused on the evolution of Planetary Boundary Layer (PBL) and its impact on surface air pollutants. The experiment used three remote sensing instruments, wind profile radar (WPR), microwave radiometer (MWR) and micro-pulse lidar (MPL), to detect the vertical profiles of winds, temperature, and aerosol backscattering coefficient and to measure the vertical profiles of surface pollutants (aerosol, CO, SO2, NOx), and also collected sonic anemometers data from a 255-m meteorological tower. Based on these measurements, the evolution of the PBL was estimated. The averaged PBL height was about 1000-1300 m during noon/afternoon-time, and 200-300 m during night-time. The PBL height and the aerosol concentrations were anti-correlated during clear and haze conditions. The averaged maximum PBL heights were 1.08 and 1.70 km while the averaged aerosol concentrations were 52 and 17 μg/m 3 under haze and clear sky conditions, respectively. The influence of aerosols and clouds on solar radiation was observed based on sonic anemometers data collected from the 255-m meteorological tower. The heat flux was found significantly decreased by haze (heavy pollution) or cloud, which tended to depress the development of PBL, while the repressed structure of PBL further weakened the diffusion of pollutants, leading to heavy pollution. This possible positive feedback cycle (more aerosols → lower PBL height → more aerosols) would induce an acceleration process for heavy ground pollution in megacities. © 2012 2012 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Zhao P.,Institute of Urban Meteorology | Dong F.,Institute of Urban Meteorology | Yang Y.,Institute of Urban Meteorology | He D.,Institute of Urban Meteorology | And 4 more authors.
Atmospheric Environment | Year: 2013

More than 400 PM2.5 samples were collected at four urban sites in Beijing (BJ), Tianjin (TJ), Shijiazhuang (SJZ), and Chengde (CD), and also one site in Shangdianzi (SDZ), which was used as a regional background station, over four seasons from 2009 to 2010. The organic carbon (OC) and elemental carbon (EC) in each sample were analyzed. The average annual concentrations were 71.8-191.2 μg m-3 for PM2.5, 10.8-26.4 μg m-3 for OC, and 3.9-9.7 μg m-3 for EC at the five sites. OC and EC concentrations were lower in the spring and summer and much higher in the autumn and winter, mainly due to aerosol emissions from additional fuel combustion for heating. OC/EC ratios were lowest in the summer and highest in the winter at SDZ, BJ, TJ, and SJZ. These seasonal trends indicate that the characteristics of carbonaceous aerosol pollution were spatially similar and season-dependent in the plain area of Beijing, Tianjin, and Hebei (BTH). An EC tracer method was used to calculate the concentrations for secondary organic carbon (SOC); SOC concentrations were also higher in the autumn and winter and lowest during the summer at all five sites. A stable atmosphere and low temperatures, which were more frequent during the winter and autumn, facilitated the accumulation of air pollutants and accelerated the condensation or adsorption of volatile organic compounds in the BTH area. Over the past ten years (1999-2009), Beijing had observed a decrease in the EC concentrations during every season and a remarkable reduction in aerosol emissions from coal combustion for heating. © 2013 Elsevier Ltd.

Gu J.,Tianjin Institute of Urban Construction | Gu J.,Nankai University | Bai Z.,Nankai University | Li W.,Nankai University | And 5 more authors.
Particuology | Year: 2011

PM2.5 samples for 24 h were collected during winter in Tianjin, China. The ambient mass concentration and chemical composition of the PM 2.5 were determined. Ionic species were analyzed by ion chromatography, while carbonaceous species were determined with the IMPROVE thermal optical reflectance (TOR) method, and inorganic elements were measured by inductively coupled plasma-atomic emission spectrometer. The daily PM 2.5 mass concentrations ranged from 48.2 to 319.2 μg/m3 with an arithmetic average of 144.6 μg/m3. The elevated PM 2.5 in winter was mostly attributed to combustion sources such as vehicle exhaust, heating, cooking and industrial emissions, low wind speeds and high relative humidity (RH), which were favorable for pollutant accumulation and formation of secondary pollutants. By chemical mass balance, it was estimated that about 89.1% of the PM2.5 mass concentrations were explained by carbonaceous species, secondary particles, crustal matters, sea salt and trace elements. Organic material was the largest contributor, accounting for about 32.7% of the total PM2.5 mass concentrations. SO4 2-, NO3 -, Cl- and NH 4 + were four major ions, accounting for 16.6%, 11.5%, 4.7% and 6.0%, respectively, of the total mass of PM2.5. © 2011 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Discover hidden collaborations