Tianjin Institute of Hygienic and Environmental Medicinal Science

Tianjin, China

Tianjin Institute of Hygienic and Environmental Medicinal Science

Tianjin, China
SEARCH FILTERS
Time filter
Source Type

Ta N.,Tianjin Institute of Hygienic and Environmental Medicinal Science | Li C.,Tianjin Institute of Hygienic and Environmental Medicinal Science | Fang Y.,Tianjin Institute of Hygienic and Environmental Medicinal Science | Liu H.,Tianjin Institute of Hygienic and Environmental Medicinal Science | And 6 more authors.
Toxicology Letters | Year: 2014

TDCPP and TCEP are two major types of organophosphorus flame retardants (OPFRs) that are bioaccumulative and persistent in the environment. The toxicity effects of TDCPP and TCEP on PC12 cell are not well understood. In the present study, we investigated morphology, viability and apoptosis in cultured PC12 cells in response to TDCPP and TCEP. The mRNA and protein expression levels of CAMKII, GAP43, tubulin and NF-H were quantified in PC12 cells treated with varying concentrations of the two agents. Results indicate that, upon treatment with the two OPFRs, cell growth decreased, apoptosis increased, morphology was altered and significant changes were found in the gene and protein levels. Treatment with TDCPP caused a reduction in the levels of each of the six proteins studied and in the gene levels of GAP43, NF-H and the two tubulins, but it resulted in an increase in CAMKII gene levels. Treatment with TCEP resulted in similar changes in gene levels to TDCPP and led to decreases in the protein levels of GAP43 and the tubulins while increasing the CAMKII and NF-H protein levels. These results suggest that changes in the gene and protein levels of the regulatory proteins (CAMKII, GAP43) and the structural proteins (tubulin, NF-H) are due to different mechanisms of the toxins, and these proteins may be useful biomarkers for the cytotoxicity and neurotoxicity. © 2014 Elsevier Ireland Ltd.


Fang Y.,Tianjin Institute of Hygienic and Environmental Medicinal Science | Gao X.,Tianjin Medical University | Zhao F.,Tianjin Medical University | Zhang H.,Tianjin Institute of Hygienic and Environmental Medicinal Science | And 4 more authors.
Journal of Proteomics | Year: 2014

Pentachlorophenol (PCP) and 2,4,6-trichlorophenol (TCP) are suspected of disrupting the endocrine system and thus affecting human and wildlife reproduction, but the potential common mechanisms and biomarkers of chlorophenols (CPs) in the ovary are not fully elucidated. In the present study, the female rare minnow (Gobiocypris rarus) was exposed to PCP (0.5, 5.0, and 50. μg/L), TCP (1.0, 10, and 100. μg/L) and 17β-estradiol (as a positive control) for 28. days, and the matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF/TOF) mass spectrometry analysis was employed to investigate the alteration of protein expression in the ovary. After comparison of the protein profiles from treated and control groups, 22 protein spots were observed to be altered in abundance (>. 2-fold) from female treated groups, and 14 protein spots were identified successfully. These proteins were related to molecular response patterns, endocrine effects, metabolic pathways, and even the possible carcinogens in response to CP exposure. The seven differentially expressed mRNA encoding proteins were measured by quantitative real-time PCR (QRT-PCR) and histopathology was also measured. Our data demonstrate that alterations of multiple pathways may be associated with the toxic effects of CPs on ovaries. Biological significance: Although numerous studies have shown the affection of the endocrine system with exposure to chlorophenols (CPs), there is little report on the alterations of protein expression in the ovaries from rare minnows following exposure to PCP or TCP. In the present study, a comparative proteomic approach using two dimensional gel electrophoresis and mass spectrometry (MALDI-TOF/TOF MS) has been developed to identify certain proteins in the ovaries of Chinese rare minnow, whose abundance changes during exposure to CPs.After comparison of the protein profiles from treated and control groups, 22 protein spots were observed to be altered in abundance (>. 2-fold) from female treated groups, and 14 protein spots were identified successfully. These proteins were related to molecular response patterns, endocrine effects, metabolic pathways, and even the possible carcinogens in response to CP exposure. Because the mechanism often involves changes in the expression of multiple proteins rather than a single protein, a global analysis of the protein alterations can result in valuable information to understand the CP action mechanism. All the above results demonstrate that the Vtg, SUMO, Lec-3 and PIMT protein are potential biomarkers and involved in the toxicity pathway of CP exposure in aquatic animals, which should be the primary focus of studies on the CP ovary toxicity mechanism in the future. © 2014 Elsevier B.V.


PubMed | Tianjin Institute of Hygienic and Environmental Medicinal Science and Tianjin Medical University
Type: | Journal: Journal of proteomics | Year: 2014

Pentachlorophenol (PCP) and 2,4,6-trichlorophenol (TCP) are suspected of disrupting the endocrine system and thus affecting human and wildlife reproduction, but the potential common mechanisms and biomarkers of chlorophenols (CPs) in the ovary are not fully elucidated. In the present study, the female rare minnow (Gobiocypris rarus) was exposed to PCP (0.5, 5.0, and 50 g/L), TCP (1.0, 10, and 100 g/L) and 17-estradiol (as a positive control) for 28 days, and the matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF/TOF) mass spectrometry analysis was employed to investigate the alteration of protein expression in the ovary. After comparison of the protein profiles from treated and control groups, 22 protein spots were observed to be altered in abundance (>2-fold) from female treated groups, and 14 protein spots were identified successfully. These proteins were related to molecular response patterns, endocrine effects, metabolic pathways, and even the possible carcinogens in response to CP exposure. The seven differentially expressed mRNA encoding proteins were measured by quantitative real-time PCR (QRT-PCR) and histopathology was also measured. Our data demonstrate that alterations of multiple pathways may be associated with the toxic effects of CPs on ovaries.Although numerous studies have shown the affection of the endocrine system with exposure to chlorophenols (CPs), there is little report on the alterations of protein expression in the ovaries from rare minnows following exposure to PCP or TCP. In the present study, a comparative proteomic approach using two dimensional gel electrophoresis and mass spectrometry (MALDI-TOF/TOF MS) has been developed to identify certain proteins in the ovaries of Chinese rare minnow, whose abundance changes during exposure to CPs. After comparison of the protein profiles from treated and control groups, 22 protein spots were observed to be altered in abundance (>2-fold) from female treated groups, and 14 protein spots were identified successfully. These proteins were related to molecular response patterns, endocrine effects, metabolic pathways, and even the possible carcinogens in response to CP exposure. Because the mechanism often involves changes in the expression of multiple proteins rather than a single protein, a global analysis of the protein alterations can result in valuable information to understand the CP action mechanism. All the above results demonstrate that the Vtg, SUMO, Lec-3 and PIMT protein are potential biomarkers and involved in the toxicity pathway of CP exposure in aquatic animals, which should be the primary focus of studies on the CP ovary toxicity mechanism in the future.

Loading Tianjin Institute of Hygienic and Environmental Medicinal Science collaborators
Loading Tianjin Institute of Hygienic and Environmental Medicinal Science collaborators