Entity

Time filter

Source Type


Li Y.-X.,CAS Qingdao Institute of Oceanology | Li Y.-X.,Tianjin Normal University | Hu Y.-H.,CAS Qingdao Institute of Oceanology | Sun J.-S.,Tianjin Normal University | And 2 more authors.
Developmental and Comparative Immunology | Year: 2012

Chemokines are small cytokines that, based on their structural differences, are classified into four groups, one of which is called CXC chemokines. In this study, we identified a CXC chemokine, CsCXCe1, from half-smooth tongue sole (Cynoglossus semilaevis) and analyzed its function. The deduced amino acid sequence of CsCXCe1 contains 115 residues and is phylogenetically distinct from known CXC chemokines. CsCXCe1 possesses the conserved RCXC motif in the form of RCWC but lacks the ELR sequence that is found in some CXC chemokines. Expression of CsCXCe1 as determined by quantitative real time RT-PCR occurred abundantly in immune organs and was upregulated by bacterial and viral infection in time dependent manners. Purified recombinant CsCXCe1 (rCsCXCe1) exhibited comparable chemotactic activities against tongue sole and turbot (Scophthalmus maximus) peripheral blood leukocytes (PBL). Microscopic analysis identified lymphocytes as the major cellular population in PBL that responds to rCsCXCe1. Mutational study showed that when the two cysteine residues in the RCWC motif of CsCXCe1 were substituted by serine, the chemoattractive activity of CsCXCe1 was completely lost. Further study showed that treatment of PBL with rCsCXCe1 (i) stimulated cellular proliferation and respiratory burst activity, (ii) upregulated the expression of a wide spectrum of immune relevant genes, and (iii) enhanced cellular resistance against bacterial infection. Taken together, these results indicate that CsCXCe1 is likely a new type of CXC chemokine that exerts chemotactic and immunostimulatory effects on PBL. © 2011 Elsevier Ltd. Source


Zhang Y.,Tianjin Normal University | Sun Y.,Tianjin Aquaculture Disease Prevention and Treatment Center | Liu Y.,Tianjin Normal University | Geng X.,Tianjin Aquaculture Disease Prevention and Treatment Center | And 5 more authors.
General and Comparative Endocrinology | Year: 2011

Molt-inhibiting hormone (MIH), a member of the crustacean hyperglycemic hormone (CHH) family, inhibits the synthesis of ecdysteroid in Y-organ (YO) and plays a significant role in the regulation of molting and growth of crustaceans. A complete cDNA sequence encoding MIH (Ers-MIH, GenBank Accession No.: DQ341280) was cloned from eyestalk of Chinese mitten crab (Eriocheir sinensis) by 5' and 3' RACEs and PCR cloning. The full-length cDNA consists of 1457. bp with a 330. bp open reading frame, encoding 110 amino acids, containing a 75 amino acid mature peptide. The deduced amino acid sequence contains a typical CHH domain. Transcripts of Ers-MIH mRNA were detected in eyestalk by Northern blotting. The production of purified recombinant Ers-MIH (rErs-MIH) expressed in Escherichia coli was 0.3. g/L. The LC-ESI-MS analysis showed that two peptide fragments of the recombinant protein were identical to the deduced amino acid sequence of Ers-MIH. By in vitro assay on E. sinensis YOs, a cGMP mediated suppression of rErs-MIH on ecdysteroidogenesis could be observed. Accumulation of cGMP in YOs showed a concentration-dependent manner within 0.01-1. nmol/mL of rErs-MIH; ecdysteroid secretion was inhibited significantly at the range of 0.01-100. nmol/mL rErs-MIH; furthermore, a significant inhibition effect on ecdysteroid releasing was shown when cGMP analog (8-Br-cGMP) concentration rose up to 100. nmol/mL. This study would facilitate to investigate the roles of MIH in molt cycle regulation. © 2011 Elsevier Inc. Source

Discover hidden collaborations