Time filter

Source Type

Wageningen, Netherlands

de Been M.,TI Food and Nutrition TIFN | de Been M.,Wageningen University | de Been M.,Radboud University Nijmegen | Tempelaars M.H.,TI Food and Nutrition TIFN | And 9 more authors.
Environmental Microbiology | Year: 2010

A common bacterial strategy for monitoring environmental challenges is to use two-component systems, which consist of a sensor histidine kinase (HK) and a response regulator (RR). In the food-borne pathogen Bacillus cereus, the alternative sigma factor σB is activated by the RR RsbY. Here we present strong indications that the PP2C-type phosphatase RsbY receives its input from the multi-sensor hybrid kinase BC1008 (renamed RsbK). Genome analyses revealed that, across bacilli, rsbY and rsbK are located in a conserved gene cluster. A B. cereus rsbK deletion strain was shown to be incapable of inducing σB upon stress conditions and was impaired in its heat adaptive response. Comparison of the wild-type and rsbK mutant transcriptomes upon heat shock revealed that RsbK was primarily involved in the activation of the σB-mediated stress response. Truncation of the RsbK RR receiver domain demonstrated the importance of this domain for σB induction upon stress. The domain architecture of RsbK suggests that in the B. cereus group and in other bacilli, environmental and intracellular stress signalling routes are combined into one single protein. This strategy is markedly different from the σB activation pathway in other low-GC Grampositives. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd. Source

Leimena M.M.,TI Food and Nutrition TIFN | Leimena M.M.,Laboratory of Microbiology | Ramiro-Garcia J.,TI Food and Nutrition TIFN | Ramiro-Garcia J.,Laboratory of Microbiology | And 18 more authors.
BMC Genomics | Year: 2013

Background: Next generation sequencing (NGS) technologies can be applied in complex microbial ecosystems for metatranscriptome analysis by employing direct cDNA sequencing, which is known as RNA sequencing (RNA-seq). RNA-seq generates large datasets of great complexity, the comprehensive interpretation of which requires a reliable bioinformatic pipeline. In this study, we focus on the development of such a metatranscriptome pipeline, which we validate using Illumina RNA-seq datasets derived from the small intestine microbiota of two individuals with an ileostomy.Results: The metatranscriptome pipeline developed here enabled effective removal of rRNA derived sequences, followed by confident assignment of the predicted function and taxonomic origin of the mRNA reads. Phylogenetic analysis of the small intestine metatranscriptome datasets revealed a strong similarity with the community composition profiles obtained from 16S rDNA and rRNA pyrosequencing, indicating considerable congruency between community composition (rDNA), and the taxonomic distribution of overall (rRNA) and specific (mRNA) activity among its microbial members. Reproducibility of the metatranscriptome sequencing approach was established by independent duplicate experiments. In addition, comparison of metatranscriptome analysis employing single- or paired-end sequencing methods indicated that the latter approach does not provide improved functional or phylogenetic insights. Metatranscriptome functional-mapping allowed the analysis of global, and genus specific activity of the microbiota, and illustrated the potential of these approaches to unravel syntrophic interactions in microbial ecosystems.Conclusions: A reliable pipeline for metatransciptome data analysis was developed and evaluated using RNA-seq datasets obtained for the human small intestine microbiota. The set-up of the pipeline is very generic and can be applied for (bacterial) metatranscriptome analysis in any chosen niche. © 2013 Leimena et al.; licensee BioMed Central Ltd. Source

Leimena M.M.,TI Food and Nutrition TIFN | Leimena M.M.,Wageningen University | Wels M.,TI Food and Nutrition TIFN | Wels M.,NIZO Food Research BV | And 8 more authors.
Applied and Environmental Microbiology | Year: 2012

RNA sequencing is starting to compete with the use of DNA microarrays for transcription analysis in eukaryotes as well as in prokaryotes. The application of RNA sequencing in prokaryotes requires additional steps in the RNA preparation procedure to increase the relative abundance of mRNA and cannot employ the poly(T)-primed approach in cDNA synthesis. In this study, we aimed to validate the use of RNA sequencing (direct cDNA sequencing and 3́-untranslated region [UTR] sequencing) using Lactobacillus plantarum WCFS1 as a model organism, employing its established microarray platform as a reference. A limited effect of mRNA enrichment on genome-wide transcript quantification was observed, and comparative transcriptome analyses were performed for L. plantarum WCFS1 grown in two different laboratory media. Microarray analyses and both RNA sequencing methods resulted in similar depths of analysis and generated similar fold-change ratios of differentially expressed genes. The highest overall correlation was found between microarray and direct cDNA sequencing-derived transcriptomes, while the 3́-UTR sequencing-derived transcriptome appeared to deviate the most. Overall, a high similarity between patterns of transcript abundance and fold-change levels of differentially expressed genes was detected by all three methods, indicating that the biological conclusions drawn from the transcriptome data were consistent among the three technologies. Source

Abee T.,TI Food and Nutrition TIFN | Abee T.,Wageningen University | Groot M.N.,TI Food and Nutrition TIFN | Groot M.N.,Wageningen University | And 7 more authors.
Food Microbiology | Year: 2011

Bacillus cereus is a Gram-positive, facultative anaerobic, endospore-forming toxicogenic human pathogen. Endospores are highly specialized, metabolically dormant cell types that are resistant to extreme environmental conditions, including heat, dehydration and other physical stresses. B. cereus can enter a range of environments, and can in its spore form, survive harsh conditions. If these conditions become favorable, spores can germinate and grow out and reach considerable numbers in a range of environments including processed foods. Certainly the last decade, when consumer preferences have shifted to mildly processed food, new opportunities arose for spore-forming spoilage and pathogenic organisms. Only rigorous methods have been shown to be capable of destroying all spores present in food, thus a shift toward e.g., milder heat preservation strategies, may result in low but significant amounts of viable spores in food products. Hence, the need for a mild spore destruction strategy is eminent including control of spore outgrowth. Consequently, there is a large interest in triggering spore germination in foodstuffs, since germinated spores have lost the extreme resistance of dormant spores and are relatively easy to kill. Another option could be to prevent germination so that no dangerous levels can be reached. This contribution will focus on germination and outgrowth characteristics of B. cereus and other members of the B. cereus group, providing an overview of the niches these spore-formers can occupy, the signals that trigger germination, and how B. cereus copes with these wake-up calls in different environments including foods, during food processing and upon interaction with the human host. © 2010 Elsevier Ltd. Source

Discover hidden collaborations