Newton, NJ, United States
Newton, NJ, United States

Time filter

Source Type

Patent
Thorlabs Inc. and Praevium Research, Inc. | Date: 2016-09-14

An optical instrument including at least a first and second wavelength swept vertical cavity laser (VCL) sources. The wavelength sweeping ranges spanned by the first and second VCL sources may differ with a region of spectral overlap. The first and second VCL sources may be operable under different modes of operation, wherein the modes of operation differ in at least one of: sweep repetition rate, sweep wavelength range, sweep center wavelength, and sweep trajectory. A VCL source may also exhibit sweep-to-sweep variation. Apparatus and methods are described for aligning sample signal data from the first VCL and sample signal data from the second VCL to generate output digital data. The output digital data is aligned with respect to at least one of: wavelength, wavenumber, and interferometric phase. The apparatus and methods can also be used to phase stabilize successive sweeps from the same VCL source or wavelength swept source.


Patent
Thorlabs Inc. | Date: 2016-10-14

A tunable laser including: a reflecting mirror; a partially transmitting mirror; a gain medium energized by a pump source; a pair of mirrors surrounding the gain medium, a first prism and a second prism located between the gain medium and the reflecting mirror; the first prism receives radiation from the gain medium and disperses the radiation to the second prism; the second prism receives and directs the radiation towards an optical element which filters the spatially dispersed radiation based on the position to the second prism, the radiation resonates between the reflecting mirror and the partially transmitting mirror; the second prism is placed on a stage moved by a linear motor such that a desired center wavelength is obtained by moving the second prism to a position so as to allow radiation having the desired center wavelength to resonate between the reflecting mirror and the partially transmitting mirror.


Patent
Thorlabs Inc. | Date: 2016-04-07

A method for transmitting data between the inside and outside of a hermetically sealed chamber, including: serializing first data into a first serial data for transmission; transmitting the first serial data at a first frequency using a first transmission line that connects the inside and outside of the hermetically sealed chamber; wherein the first transmission line is coupled to a first ground.


Patent
Thorlabs Inc. | Date: 2016-06-09

Apparatus and methods are described herein for cleaving an optical element at a defined distance from a splice (or other reference point/feature) of the optical element within a desired precision and/or accuracy. In some embodiments, a method includes receiving an indication of a location of a feature in an intermediate optical assembly visible within an image of the intermediate optical assembly. The feature can be for example, a splice. A position of the intermediate optical assembly is translated relative to a cleave unit based on the indication. After translating, the intermediate optical assembly, the intermediate optical assembly is cleaved to form an optical assembly that has an end face at a location disposed at a non-zero distance from the location of the feature. In some embodiments, the location of the feature can be determined with an image recognition system.


Disclosed are several technical approaches of using low coherence interferometry techniques to create an autofocus apparatus for optical microscopy. These approaches allow automatic focusing on thin structures that are positioned closely to reflective surfaces and behind refractive material like a cover slip, and automated adjustment of focus position into the sample region without disturbance from reflection off adjacent surfaces. The measurement offset induced by refraction of material that covers the sample is compensated for. Proposed are techniques of an instrument that allows the automatic interchange of imaging objectives in a low coherence interferometry autofocus system, which is of major interest in combination with TDI (time delay integration) imaging, confocal and two-photon fluorescence microscopy.


Patent
Thorlabs Inc. | Date: 2016-04-01

A method for simultaneous time delay integration (TDI) imaging using multiple channels of a multi-tap device, including: translating a field of view (FOV) over a sample to be imaged; optically aligning a direction of travel of the FOV to a direction of charge transfer for each tap of the multi-tap device; and reading out the image data from each channel using settings that are appropriate to a particular application.


Patent
Thorlabs Inc. | Date: 2015-08-13

A piezoelectric actuator with integrated features to provide coarse position adjustment of a pushing threaded rod and also mechanically amplified piezo motion for fine position adjustment is presented here in three design variants. The mechanical amplifier houses one or more piezo stacks in longitudinal axis with preload to translate an amplified motion in the order of a few times in the transverse axis, perpendicular to the piezo stack motion. The piezo amplifier output travel is transmitted to the threaded rod with a ball at the end to push a desired surface for position adjustments and motion translation in application such as a mirror mount.


Patent
Thorlabs Inc. | Date: 2015-04-09

An autofocus apparatus is capable of detecting the position of a sample on a microscope. The sample may consist of a specimen mounted between a microscope slide and coverslip or specimens within a well plate. The device tracks the position of a sample by identifying refractive index boundaries through Fresnel reflections. A change in refractive index can correspond to the top and bottom of a coverslip, the top of a slide, the bottom of a well plate or the bottom of a well within a well plate. Using optical coherence tomography (OCT) these reflections are used to form a depth scan of the sample which gives the positions of these surfaces relative to the objective. The device functions as an autofocus system by compensating for any variation of the position of the sample from the focal plane of the objective.


Patent
Thorlabs Inc. | Date: 2016-05-27

A monolithic optical mount having a bore for accommodating an optical element, the bore including: a first ridge located at a first position on the inside circumference of the bore; a second ridge located at a second position on the inside circumference of the bore; and a flexure extending from along the inside circumference of the bore to a point beyond a threaded hole which passes through from the outside circumference of the bore to the inside circumference of the bore; wherein the flexure is actuated by turning a screw in the threaded hole thereby adjusting an amount of force pushing against a point on the flexure by a tip of the screw.


An adaptive optics scanning system and method using a beam projection module with four or more axes of motion that can project and control the position and angle of a beam of light to or from an adaptive optics element. The adaptive optics scanning system is compact in size, overcoming the challenges of a traditional lens and mirror based pupil relay design. The adaptive optics scanning system has little to no dispersion, chromatic aberration, and off-axis aberration for improved optical performance. The system and methods for calibrating and optimizing the system are described. A modular adaptive optics unit that scans and interfaces an adaptive optics element is described.

Loading Thorlabs Inc collaborators
Loading Thorlabs Inc collaborators