Thomas Starzl Transplantation Institute

Pittsburgh, PA, United States

Thomas Starzl Transplantation Institute

Pittsburgh, PA, United States

Time filter

Source Type

Zhao Y.,University of Pittsburgh | Zhao Y.,Magee Womens Research Institute | Alshabi A.M.,University of Pittsburgh | Caritis S.,Magee Womens Hospital | And 5 more authors.
American Journal of Obstetrics and Gynecology | Year: 2014

Objective The aim of this study was to examine the effects of 17-alpha-hydroxyprogesterone caproate (17OHP-C) on the activity and expression of several common hepatic cytochrome P450 (CYP) enzymes. Study Design Primary human hepatocytes were pretreated with vehicle or 17OHP-C (0.1 and 1 μmol/L) for 72 hours, then incubated for 1 hour with a cocktail of CYP substrates. The activity of various CYP enzymes was determined by measuring the formation of the metabolites of specific CYP substrates, using liquid chromatography-tandem mass spectrometry. The messenger RNA expression of various CYP enzymes was determined by real-time polymerase chain reaction.Results In primary cultures of human hepatocytes, 17OHP-C minimally altered the activity or messenger RNA levels of CYP1A2, CYP2C9, CYP2D6, and CYP3A. However, 17OHP-C at 1 μmol/L increased CYP2C19 activity by 2.8-fold (P <.01) and CYP2C19 expression by 2.4-fold (P <.001), compared with vehicle-treated cells. A strong positive correlation between activity and expression of CYP2C19 was also observed (r = 0.9, P <.001).Conclusion The activity and expression of hepatic CYP2C19 was significantly increased by 17OHP-C in primary cultures of human hepatocytes. This suggests that exposure to medications that are metabolized by CYP2C19 may be decreased in pregnant patients receiving 17OHP-C. Metabolism of substrates of CYP1A2, CYP2C9, CYP2D6, and CYP3A are not expected to be altered in patients receiving 17OHP-C. © 2014 Elsevier Inc. All rights reserved.

Zhao Y.,University of Pittsburgh | Hebert M.F.,University of Washington | Venkataramanan R.,University of Pittsburgh | Venkataramanan R.,Thomas Starzl Transplantation Institute | And 2 more authors.
Seminars in Perinatology | Year: 2014

Pregnancy is associated with a variety of physiological changes that can alter the pharmacokinetics and pharmacodynamics of several drugs. However, limited data exists on the pharmacokinetics and pharmacodynamics of the majority of the medications used in pregnancy. In this article, we first describe basic concepts (drug absorption, bioavailability, distribution, metabolism, elimination, and transport) in pharmacokinetics. Then, we discuss several physiological changes that occur during pregnancy that theoretically affect absorption, distribution, metabolism, and elimination. Further, we provide a brief review of the literature on the clinical pharmacokinetic studies performed in pregnant women in recent years. In general, pregnancy increases the clearance of several drugs and correspondingly decreases drug exposure during pregnancy. Based on current drug exposure measurements during pregnancy, alterations in the dose or dosing regimen of certain drugs are essential during pregnancy. More pharmacological studies in pregnant women are needed to optimize drug therapy in pregnancy. © 2014.

Zhao Y.,University of Pittsburgh | Zhao Y.,U.S. Food and Drug Administration | Chen H.-J.,University of Pittsburgh | Chen H.-J.,Tsinghua University | And 7 more authors.
Biomedical Chromatography | Year: 2016

A liquid chromatography-tandem mass spectrometric method for the quantification of granisetron and its major metabolite, 7-hydroxy granisetron in human plasma and urine samples was developed and validated. Respective stable isotopically labeled granisetron and 7-hydroxy granisetron were used as internal standards (IS). Chromatography was performed using an Xselect HSS T3 analytical column with a mobile phase of 20% acetonitrile in water (containing 0.2 mM ammonium formate and 0.14% formic acid, pH 4) delivered in an isocratic mode. Tandem mass spectrometry operating in positive electrospray ionization mode with multiple reaction monitoring was used for quantification. The standard curves were linear in the concentration ranges of 0.5-100 ng/mL for granisetron and 0.1-100 ng/mL for 7-hydroxy granisetron in human plasma samples, and 2-2000 ng/mL for granisetron and 2-1000 ng/mL for 7-hydroxy granisetron in human urine samples, respectively. The accuracies were >85% and the precision as determined by the coefficient of variations was <10%. No significant matrix effects were observed for granisetron or 7-hydroxy granisetron in either plasma or urine samples. Granisetron was stable under various storage and experimental conditions. This validated method was successfully applied to a pharmacokinetic study after intravenous administration of 1 mg granisetron to a pregnant subject. © 2016 John Wiley & Sons, Ltd.

PubMed | Thomas Starzl Transplantation Institute and University of Pittsburgh
Type: Journal Article | Journal: Expert opinion on drug metabolism & toxicology | Year: 2016

Limited information is available on the pharmacokinetics of drugs in the donors and recipients following adult living donor liver transplantation (LDLT). Given that both the donors and recipients receive multiple drug therapies, it is important to assess the pharmacokinetics of drugs used in these patients.Pathophysiological changes that occur post-surgery and regulatory factors that may influence pharmacokinetics of drugs, especially hepatic drug metabolism and transport in both LDLT donors and the recipients are discussed. Pharmacokinetic data in animals with partial hepatectomy are presented. Clinical pharmacokinetic data of certain drugs in LDLT recipients are further reviewed.It takes up to six months for the liver volume to return to normal after LDLT surgery. In the LDLT recipients, drug exposure generally is higher with lower clearance during early period post-transplant; lower initial dosages of immunosuppressants are used than deceased donor liver transplant recipients during the first six months post-transplantation. In animals, the activities of hepatic drug metabolizing enzymes and transporters are known to be altered differentially during liver regeneration. Future studies on the actual hepatic function with reference to drug metabolism, drug transport, and biliary secretion in both LDLT donors and recipients are required.

Loading Thomas Starzl Transplantation Institute collaborators
Loading Thomas Starzl Transplantation Institute collaborators