Entity

Time filter

Source Type

Roseville, CA, United States

Way M.J.,NASA | Klose C.D.,Think Geohazards
Publications of the Astronomical Society of the Pacific | Year: 2012

We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. Avariety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using Δz = z phot - z spec) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods. © 2012. The Astronomical Society of the Pacific.


Dahm T.,German Research Center for Geosciences | Becker D.,University of Hamburg | Bischoff M.,Bundesanstalt fur Geowissenschaften und Rohstoffe BGR | Cesca S.,University of Hamburg | And 11 more authors.
Journal of Seismology | Year: 2012

Various techniques are utilized by the seismological community, extractive industries, energy and geoengineering companies to identify earthquake nucleation processes in close proximity to engineering operation points. These operations may comprise fluid extraction or injections, artificial water reservoir impoundments, open pit and deep mining, deep geothermal power generations or carbon sequestration. In this letter to the editor, we outline several lines of investigation that we suggest to follow to address the discrimination problem between natural seismicity and seismic events induced or triggered by geoengineering activities. These suggestions have been developed by a group of experts during several meetings and workshops, and we feel that their publication as a summary report is helpful for the geoscientific community. Specific investigation procedures and discrimination approaches, on which our recommendations are based, are also published in this Special Issue (SI) of Journal of Seismology. © 2012 Springer Science+Business Media B.V.


Klose C.D.,Think Geohazards
Environmental Earth Sciences | Year: 2012

Two and a half years prior to China's M7. 9 Wenchuan earthquake of May 2008, at least 300 million metric tons of water accumulated with additional seasonal water level changes in the Minjiang River Valley at the eastern margin of the Longmen Shan. This article shows that static surface loading in the Zipingpu water reservoir induced Coulomb failure stresses on the nearby Beichuan thrust fault system at <17 km depth. Triggering stresses exceeded levels of daily lunar and solar tides and perturbed a fault area measuring 416 ± 96 km 2. These stress perturbations, in turn, likely advanced the clock of the mainshock and directed the initial rupture propagation upward towards the reservoir on the "Coulomb-like" Beichuan fault with rate- and state-dependent frictional behavior. Static triggering perturbations produced up to 60 years (0.6%) of equivalent tectonic loading, and show strong correlations to the coseismic slip. Moreover, correlations between clock advancement and coseismic slip, observed during the mainshock beneath the reservoir, are strongest for a longer seismic cycle (10kyr) of M > 7 earthquakes. Finally, the daily event rate of the micro-seismicity (M ≥ 0.5) correlates well with the static stress perturbations, indicating destabilization. © 2011 Springer-Verlag.


Klose C.D.,Think Geohazards | Klose C.D.,NorthWest Research Associates, Inc.
Journal of Seismology | Year: 2012

A global catalog of small- to large-sized earthquakes was systematically analyzed to identify causality and correlatives between human-made mass shifts in the upper Earth's crust and the occurrence of earthquakes. The mass shifts, ranging between 1 kt and 1 Tt, result from large-scale geoengineering operations, including mining, water reservoirs, hydrocarbon production, fluid injection/extractions, deep geothermal energy production and coastal management. This article shows evidence that geomechanical relationships exist with statistical significance between (a) seismic moment magnitudes M of observed earthquakes, (b) lateral distances of the earthquake hypocenters to the geoengineering "operation points" and (c) mass removals or accumulations on the Earth's crust. Statistical findings depend on uncertainties, in particular, of source parameter estimations of seismic events before instrumental recoding. Statistical observations, however, indicate that every second, seismic event tends to occur after a decade. The chance of an earthquake to nucleate after 2 or 20 years near an area with a significant mass shift is 25 or 75 %, respectively. Moreover, causative effects of seismic activities highly depend on the tectonic stress regime in which the operations take place (i. e., extensive, transverse or compressive). Results are summarized as follows: First, seismic moment magnitudes increase the more mass is locally shifted on the Earth's crust. Second, seismic moment magnitudes increase the larger the area in the crust is geomechanically polluted. Third, reverse faults tend to be more trigger-sensitive than normal faults due to a stronger alteration of the minimum vertical principal stress component. Pure strike-slip faults seem to rupture randomly and independently from the magnitude of the mass changes. Finally, mainly due to high estimation uncertainties of source parameters and, in particular, of shallow seismic events (<10 km), it remains still very difficult to discriminate between induced and triggered earthquakes with respect to the data catalog of this study. However, first analyses indicate that small- to medium-sized earthquakes (M6) seem to be triggered. The rupture propagation of triggered events might be dominated by pre-existing tectonic stress conditions. © 2012 Springer Science+Business Media B.V.

Discover hidden collaborations