Time filter

Source Type

Toronto, Canada

Arenas Y.,Theralase Technologies | Monro S.,Acadia University | Shi G.,Acadia University | Mandel A.,Theralase Technologies | And 2 more authors.
Photodiagnosis and Photodynamic Therapy

Background: The introduction of new disinfection and sterilization methods, such as antimicrobial photodynamic therapy, is urgently needed for the healthcare industry, in particular to address the pervasive problem of antibiotic resistance. This study evaluated the efficacy and the mechanisms of photodynamic antimicrobial chemotherapy (PACT), also known as photodynamic inactivation (PDI) of microorganisms, induced by novel Ru(II)-based photosensitizers against Staphylococcus aureus and methicillin-resistant S. aureus strains. Methods: The photodynamic antibacterial effects of a new class of Ru(II)-based photosensitizers (TLD1411 and TLD1433) were evaluated against a strain of S. aureus (ATCC 25923) and a methicillin-resistant strain of S. aureus (MRSA, ATCC 33592). Bacterial samples were dosed with a range of photosensitizer concentrations (0.3-12μM) and exposed to 530nm light (90Jcm-2) in normoxic conditions (ambient atmosphere) and in hypoxic conditions (0.5% O2). Results: Both photosensitizers exerted photodynamic inactivation (PDI) of the microorganisms in normoxia, and this activity was observed in the nanomolar regime. TLD1411 and TLD1433 maintained this PDI potency under hypoxic conditions, with TLD1433 becoming even more active in the low-oxygen environment. Conclusion: The observation of activity in hypoxia suggests that there exists an oxygen-independent, Type I photoprocess for this new class of compounds in addition to the typical Type II pathway mediated by singlet oxygen. The intrinsic positive charge of the Ru(II) metal combined with the oxygen independent activity demonstrated by this class of photosensitizers presents a new strategy for eradicating both gram-positive and gram-negative bacteria regardless of oxygenation level. © 2013 Elsevier B.V. Source

Fong J.,Theralase Technologies | Kasimova K.,University of Toronto | Arenas Y.,Theralase Technologies | Kaspler P.,Theralase Technologies | And 3 more authors.
Photochemical and Photobiological Sciences

The photo-physical and photo-biological properties of two small (<2 kDa), novel Ru(ii) photosensitizers (PSs) referred to as TLD1411 and TLD1433 are presented. Both PSs are highly water-soluble, provide only very limited luminescence emission at 580-680 nm following excitation at 530 nm, and demonstrate high photostability with less than 50% photobleaching at radiant exposures H = 275 J cm-2 (530 nm irradiation). It was previously shown that these two photosensitizers exhibit a large singlet oxygen (1O2) quantum yield (Φ (Δ) ∼0.99 in acetonitrile). Their photon-mediated efficacy to cause cell death (λ = 530 nm, H = 45 J cm-2) was tested in vitro in colon and glioma cancer cell lines (CT26.WT, CT26.CL25, F98, and U87) and demonstrated a strong photodynamic effect with complete cell death at concentrations as low as 4 and 1 μM for TLD1411 and TLD1433, respectively. Notably, dark toxicity was negligible at concentrations less than 25 and 10 μM for TLD1411 and TLD1433, respectively. The ability of the PSs to initiate Type I photoreactions was tested by exposing PS-treated U87 cells to light under hypoxic conditions (pO2 < 0.5%), which resulted in a complete loss of the PDT effect. In vivo, the maximum tolerated doses 50 (MTD50) were determined to be 36 mg kg-1 (TLD1411) and 103 mg kg-1 (TLD1433) using the BALB/c murine model. In vivo growth delay studies in the subcutaneous colon adenocarcinoma CT26.WT murine model were conducted at a photosensitizer dose equal to 0.5 and 0.2 MTD50 for TLD1411 and TLD1433, respectively. 4 hours post PS injection, tumours were irradiated with continuous wave or pulsed light sources (λ = 525-530 nm, H = 192 J cm-2). Overall, treatment with continuous wave light demonstrated a higher tumour destruction efficacy when compared to pulsed light. TLD1433 mediated PDT resulted in statistically significant longer animal survival compared to TLD1411. Two-thirds of TLD1433-treated mice survived more than 100 days (p < 0.01) whereas TLD1411-treated mice did not survive longer than 20 days. Here we present evidence that two novel PSs have very potent photo-biological properties and are able to cause PDT-mediated cell death in both in vitro cell culture models and in vivo tumour regression. © 2015 The Royal Society of Chemistry and Owner Societies. Source

Discover hidden collaborations