Theoretical and Computational Physics Group

Tehrān, Iran

Theoretical and Computational Physics Group

Tehrān, Iran
SEARCH FILTERS
Time filter
Source Type

Azar Y.T.,Theoretical and Computational Physics Group | Payami M.,Theoretical and Computational Physics Group
Applied Surface Science | Year: 2017

Energy level alignment at solid–solvent interfaces is an important step in determining the properties of electrochemical systems. The positions of conduction and valence band edges of a semiconductor are affected by its environment. In this study, using first-principles DFT calculation, we have determined the level shifts of the semiconductors TiO2 and ZnO at the interfaces with MeCN and DMF solvent molecules. The level shifts of semiconductor are obtained using the potential difference between the clean and exposed surfaces of asymmetric slabs. In this work, neglecting the effects of present ions in the electrolyte solution, we have shown that the solvent molecules give rise to an up-shift for the levels, and the amount of this shift varies with coverage. It is also shown that the shapes of density of states do not change sensibly near the gap. Molecular dynamics simulations of the interface have shown that at room temperatures the semiconductor surface is not fully covered by the solvent molecules, and one must use intermediate values in an static calculations. © 2017 Elsevier B.V.


Azar Y.T.,Theoretical and Computational Physics Group | Payami M.,Theoretical and Computational Physics Group
Physical Chemistry Chemical Physics | Year: 2014

In this work, using the DFT and TDDFT, we have theoretically studied the electronic and optical properties of the two recently synthesized coadsorbents Y1 and Y2, which were aimed to enhance the efficiency of the black dye-sensitized solar cells. To determine the solvatochromic shifts, both the implicit and mixed implicit-explicit models have been used. The connection between the solvatochromic shifts and the changes in dipole moments in the excitation process is discussed. The difference in excitation charge transfer is utilized to explain the experimentally observed difference in Jsc for Y1 and Y2. Investigating the interactions of I2 molecules in the electrolyte solution with the coadsorbents showed that with Y1 the recombination loss was weakened through decreasing the I2 concentration near the TiO2 surface, whereas with Y2 it was increased. As a result, the higher values of both Jsc and Voc with the Y1 coadsorbent explain its experimentally observed higher efficiency. The present study sheds light on how to design and engineer newer coadsorbents or organic dyes for higher efficiencies. © 2014 The Partner Organisations.


Azar Y.T.,Theoretical and Computational Physics Group | Payami M.,Theoretical and Computational Physics Group
Physical Chemistry Chemical Physics | Year: 2015

Recently, some new series of heteroleptic ruthenium-based dyes, the so-called RD dyes, were designed and synthesized showing better performances compared to the well-known homoleptic N719. In this work, using the density-functional theory and its time-dependent extension, we have investigated the electronic structure and absorption spectra of these newly synthesized dyes, and compared the results to those of N3 dye to describe the variations of the properties due to the molecular engineering of the ancillary ligand. We have shown that the calculation results of the absorption spectra for these dyes using the PBE0 for the exchange-correlation functional are in better agreement with the experiment than using B3LYP or range-separated CAM-B3LYP. We have also derived a formula based on the DFT and used it to visually describe the level shifts in a solvent. The higher Jsc observed in these new dyes is explained by the fact that here, in contrast to N3, the excitation charge was effectively transferred to the anchoring ligand. Furthermore, we have shown that the difference dipole moment vectors of the ground and excited states can be used to determine the charge-transfer direction in an excitation process. Finally, different electron lifetimes observed in these dyes are explained by investigating the adsorption geometries and the relative orientations of iodine molecules in different "dye⋯I2" complexes. © the Owner Societies 2015.


PubMed | Theoretical and Computational Physics Group
Type: Journal Article | Journal: Physical chemistry chemical physics : PCCP | Year: 2015

Recently, some new series of heteroleptic ruthenium-based dyes, the so-called RD dyes, were designed and synthesized showing better performances compared to the well-known homoleptic N719. In this work, using the density-functional theory and its time-dependent extension, we have investigated the electronic structure and absorption spectra of these newly synthesized dyes, and compared the results to those of N3 dye to describe the variations of the properties due to the molecular engineering of the ancillary ligand. We have shown that the calculation results of the absorption spectra for these dyes using the PBE0 for the exchange-correlation functional are in better agreement with the experiment than using B3LYP or range-separated CAM-B3LYP. We have also derived a formula based on the DFT and used it to visually describe the level shifts in a solvent. The higher Jsc observed in these new dyes is explained by the fact that here, in contrast to N3, the excitation charge was effectively transferred to the anchoring ligand. Furthermore, we have shown that the difference dipole moment vectors of the ground and excited states can be used to determine the charge-transfer direction in an excitation process. Finally, different electron lifetimes observed in these dyes are explained by investigating the adsorption geometries and the relative orientations of iodine molecules in different dyeI2 complexes.

Loading Theoretical and Computational Physics Group collaborators
Loading Theoretical and Computational Physics Group collaborators