Time filter

Source Type

Win A.K.,Global University | Reece J.C.,Global University | Dowty J.G.,Global University | Buchanan D.D.,Global University | And 15 more authors.
International Journal of Cancer | Year: 2016

Germline mutations in the DNA base excision repair gene MUTYH are known to increase a carrier's risk of colorectal cancer. However, the risks of other (extracolonic) cancers for MUTYH mutation carriers are not well defined. We identified 266 probands (91% Caucasians) with a MUTYH mutation (41 biallelic and 225 monoallelic) from the Colon Cancer Family Registry. Mutation status, sex, age and histories of cancer from their 1,903 first- and 3,255 second-degree relatives were analyzed using modified segregation analysis conditioned on the ascertainment criteria. Compared with incidences for the general population, hazard ratios (HRs) (95% confidence intervals [CIs]) for biallelic MUTYH mutation carriers were: urinary bladder cancer 19 (3.7-97) and ovarian cancer 17 (2.4-115). The HRs (95% CI) for monoallelic MUTYH mutation carriers were: gastric cancer 9.3 (6.7-13); hepatobiliary cancer 4.5 (2.7-7.5); endometrial cancer 2.1 (1.1-3.9) and breast cancer 1.4 (1.0-2.0). There was no evidence for an increased risk of cancers at the other sites examined (brain, pancreas, kidney or prostate). Based on the USA population incidences, the estimated cumulative risks (95% CI) to age 70 years for biallelic mutation carriers were: bladder cancer 25% (5-77%) for males and 8% (2-33%) for females and ovarian cancer 14% (2-65%). The cumulative risks (95% CI) for monoallelic mutation carriers were: gastric cancer 5% (4-7%) for males and 2.3% (1.7-3.3%) for females; hepatobiliary cancer 3% (2-5%) for males and 1.4% (0.8-2.3%) for females; endometrial cancer 3% (2%-6%) and breast cancer 11% (8-16%). These unbiased estimates of both relative and absolute risks of extracolonic cancers for people, mostly Caucasians, with MUTYH mutations will be important for their clinical management. © 2016 UICC.

Scofield J.M.P.,The University of MelbourneParkville | Gurr P.A.,The University of MelbourneParkville | Kim J.,The University of MelbourneParkville | Fu Q.,The University of MelbourneParkville | And 3 more authors.
Journal of Polymer Science, Part A: Polymer Chemistry | Year: 2015

A series of well-defined diblock copolymers (BCPs) consisting of poly(ethylene glycol) (PEG) and poly(dimethylsiloxane) (PDMS) were synthesized and blended with commercially available PEBAX® 2533 to form the active layer of thin-film composite (TFC) membranes, via spin-coating. BCPs with a PEG component ranging from 1 to 10 kDa and a PDMS component ranging from 1 to 10 kDa were synthesized by a facile condensation reaction of hydroxyl terminated PEG and carboxylic acid functionalized PDMS. The BCP/PEBAX® 2533 blends up to 50 wt % on cross-linked PDMS gutter layers were tested at 35 °C and 350 kPa. TFC membranes containing BCPs of 1 kDa PEG and 1-5 kDa PDMS produced optimal results with CO2 permeances of approximately 1000 GPU which is an increase up to 250% of the permeance of pure PEBAX® 2533 composite membranes, while maintaining a CO2/N2 selectivity of 21. © 2015 Wiley Periodicals, Inc.

Loading The University of MelbourneParkville collaborators
Loading The University of MelbourneParkville collaborators