Time filter

Source Type

Osterville, MA, United States

The Switch | Date: 2014-04-29

A solenoid coil assembly for hazardous environments comprises a solenoid coil and an enclosure entirely filled with encapsulation material. The encapsulation material leaves zero or almost zero volume in the enclosure for hazardous material to accumulate in any amount that could explode. This allows the solenoid coil assembly to be constructed without the usual industry standard flame paths. Additionally, the enclosure may be made of physically rigid and strong material such as metal or the like to better withstand harsh and corrosive conditions within hazardous environments without being explosion proof. The walls of such an enclosure need only have a moderate thickness and weight relative to enclosures that are explosion proof, as there is no meaningful risk of an explosion occurring within the enclosure. The combination of a rugged exterior and a zero-volume interior allows the solenoid coil assembly to reduce weight and cost while providing superior environmental protection.

The present disclosure provides a method and system for measuring an increase in wattage to detect a potential winding failure. The increase in watts in the winding occurs when a time-varying magnetic field from active turns of the winding induces a time-varying current on shorted turns of the winding. The resistance through the shorted turns and the induced current result in power usage and increased watts. The wattage increase is much greater than a resistance decrease in the winding by the shorted turns. Measuring the watts results in detecting a shorting winding with greater sensitivity than measuring the resistance. In one embodiment, the winding can be tested offline with a wattmeter and power supply. In another embodiment, the winding in use and its wattage can be monitored continuously or periodically locally or remotely, with an optional sensor to initiate a signal upon reaching a certain percentage increase in watts.

The Switch | Date: 2014-07-22

A lighting circuit for a light emitting diode (LED) bulb capable of operating at different light output levels depending on received AC power includes a first group of LEDs and second group of LEDs, each of which is configured to emit light as a group. The lighting circuit also includes an AC/DC converter electrically connected to the first and second groups of LEDs. A detector circuit detects received AC power. A selection circuit is operable to cause the AC/DC converter circuit to provide current into one configuration of LEDs from the group of configurations of LEDs consisting of: the first group of LEDs only, the second group of LEDs only, and the first and second group of LEDs. The configuration of LEDs to provide current to is selected based on received AC power.

The Switch | Date: 2014-06-06

A constant power drive for light emitting diodes, such that there is automatic compensation for variation in forward voltage of the LED, both in a single unit with temperature, and also due to unit-to-unit variations.

The Switch | Date: 2015-10-16

The present invention is directed to a safety system integrated into a liquid-insulated high voltage network grounding switch, including modifications to the switch structure to provide an arrangement that is more efficiently installed with greater precision than found in conventional arrangements. The result is a switch assembly that adheres to updated IEEE/ANSI Standards, while still fitting into existing vault space meant to accommodate earlier switch gear.

Discover hidden collaborations