Entity

Time filter

Source Type

Pretoria, South Africa

The South African National Space Agency is South Africa's government agency responsible for the promotion and development of aeronautics and aerospace space research. It fosters cooperation in space-related activities and research in space science, seeks to advance scientific engineering through human capital, as well as the peaceful use of outer space, and supports the creation of an environment conducive to the industrial development of space technologies within the framework of national government.SANSA was established on 9 December 2010 by the National Space Agency Act.Currently, SANSA's main focusses include using data obtained from remote sensing through satellites and other projects to provide assessment on flooding, fires, resource management and environmental phenomena in South Africa and the African continent. Wikipedia.


Yamazaki Y.,Lancaster University | Kosch M.J.,Lancaster University | Kosch M.J.,The South African National Space Agency
Journal of Geophysical Research A: Space Physics | Year: 2014

This paper describes long-term changes in the geomagnetic lunar (L) and solar (S) daily variations. We analyze the eastward component of the geomagnetic field observed at eight midlatitude stations during 1903-2012. The amplitude and phase for the semidiurnal component of the L and S variations are examined. Both L and S amplitudes correlate with the solar activity index F10.7, revealing a prominent 11 year solar cycle. In both cases, the correlation is slightly better with √F10.7 than F10.7. The v sensitivity of the L variation to solar activity is comparable with that of the S variation. The solar cycle effect is also found in the phase of the S variation but not apparent in the phase of the L variation. The ratio in the amplitude of the L to S variation shows a long-term decrease (approximately 10% per century), which may be due to a reduction in lunar tidal waves from the lower atmosphere to the upper atmosphere in association with climate change. © 2014. The Authors. Source


Kotze P.B.,The South African National Space Agency
South African Journal of Geology | Year: 2011

Quiet-time mean monthly values from the INTERMAGNET observatory at Hermanus (HER) in South Africa were used to study the changes in secular variation during the period between 2005 and 2009. After removing an annual variation resulting from magnetospheric and ionospheric currents by means of a 12-month running means applied to the respective observatory first differences of the X, Y, and Z components, clear evidence was revealed of a strong geomagnetic jerk that occurred during 2007 in this area. The GRIMM-2X model also provided evidence of the occurrence of this jerk in 2007. Of particular interest is that GRIMM-2X predicts the turning points in all the secular variation trends to occur much earlier than revealed by the observatory data. We also observed that the power of this jerk, determined as the difference in slope of the secular variation before and after the jerk, is several times stronger than the global jerk of 1982/3. © 2011 June Geological Society of South Africa. Source


Odindi J.O.,University of KwaZulu - Natal | Mhangara P.,The South African National Space Agency
International Journal of Environmental Research | Year: 2012

Given the critical role played by urban green spaces and the emergence of remote sensing as a valuable natural resource management tool, this study sought to identify trends in green spaces within the context of South Africa's transition period (1990 - 2000). Using the city of Port Elizabeth as a case study, three sets of Landsat - 5 Thematic Mapper images (1990, 1995 and 2000) were geo-processed, classified into vegetation density categories and verified using respective aerial photographs. There was a steady decline in areas covered by Very sparse vegetation, Sparse vegetation and Dense vegetation classes. However, areas covered by Very dense vegetation showed a steady increase during the study period. Using remote sensing applications, this study provides an insight into trends in green spaces in the city of Port Elizabeth during the transition period. This study further shows the importance of remote sensing as a mapping tool that can be used to provide information for physical, social and ecological planning to achieve urban socio-ecological sustainability in rapidly changing urban environments. Source


The security of space assets are affected by the high-energy charged particle environment in the radiation belts. The controlling principal source and loss mechanisms in the radiation belts are not yet completely understood. During a geomagnetic storm the length of time during which space assets are in danger is determined by the loss mechanisms, particularly by relativistic electron precipitation. The primary mechanism for this precipitation is the interaction of several wave modes with resonant electrons which leads to scattering into the atmospheric loss cone. The nature of the wave activity and the interactions between the waves and radiation belt particles are strongly governed by the properties of the plasmasphere. At this point there are few existing and regular measurements of plasmaspheric properties, with existing plasmaspheric models lacking the structures known to exist in the real plasmasphere. There is evidence that enhanced wave activity and enhanced radiation belt losses occur due to such structures. In addition, there are large uncertainties concerning the fundamental nature of relativistic electron precipitation (REP), due to the difficulties of undertaking quality in-situ measurements. To address these uncertainties in this proposed project we will provide regular longitudinally-resolved measurements plasmaspheric electron and mass densities and hence monitor the changing composition of the plasmasphere, one of the properties which determines wave growth. This will allow us to develop a data assimilative model of the plasmasphere. At the same time, we will monitor the occurrence and properties of REP, tying the time-resolved loss of relativistic electrons to the dynamic plasmasphere observations. Our approach will primarily use ground-based networks of observing stations, operating in the ULF and VLF ranges, deployed on a worldwide level. Our proposal is made up of 6 work packages to meet these science goals.


Grant
Agency: Cordis | Branch: FP7 | Program: CSA-SA | Phase: ENV.2009.4.1.4.1 | Award Amount: 1.21M | Year: 2009

The purpose of the GEO Network for Capacity Building (GEO-Net-CaB) project is to create the conditions for the improvement and increase of the GEO capacity building activities and framework, with special emphasis on developing countries, new EU member states (and EU neighbouring states) and climate monitoring and will serve the bigger goal of improved effectiveness and efficiency of GEO capacity building for application in the GEO societal benefit areas. Coinciding with this purpose, successful brokerage with (potential) clients for earth observation products and services will be facilitated. The project will deliver the following output: 1. Capacity building needs in earth observation are identified (at a generic and global level, but with emphasis on the target regions). 2. Specifications for earth observation capacity buildings are described. 3. Resource providers are identified. 4. Sustainable brokerage between stakeholders (including resource providers) is established. 5. A mechanism to facilitate cooperation between stakeholders and providers is established. 6. A global base of technical expertise for education and training in earth observation is established (with emphasis on developing countries, new EU member states and climate monitoring). 7. Monitoring and evaluation mechanisms for determining the efficacy of GEO capacity building efforts are established. To achieve maximum impact demonstration projects will be carried out in Southern Africa, the French-speaking African region, Czechia and Poland, with spin-offs to EU neighbouring countries and Latin America and Asia. The project (with a duration of three years) will be carried out by a strong consortium of partners from the Netherlands, France, South Africa, Morocco, Czechia and Poland, supervised by an advisory board with worldwide representation and strong connections to GEO.

Discover hidden collaborations