The Silva Tarouca Research Institute

Brno, Czech Republic

The Silva Tarouca Research Institute

Brno, Czech Republic
SEARCH FILTERS
Time filter
Source Type

Ehrenbergerova L.,Mendel University in Brno | Kucera A.,Mendel University in Brno | Cienciala E.,IFER Institute of Forest Ecosystem Research | Trochta J.,The Silva Tarouca Research Institute | Volarik D.,Mendel University in Brno
Agroforestry Systems | Year: 2017

Coffee leaf rust (CLR), caused by Hemileia vastarix, is one of the most serious diseases of coffee plantations and cause great losses in coffee production. We aimed to examine coffee varieties, shade, age of coffee plants, coffee plant density and soil properties in relation to CLR infection. To do this, we established a total of 75 plots in three agroforestry coffee plantations in the central Peruvian Amazon. We gathered data there in 2011 (dry season) on the presence/absence of CLR; coffee variety; age and density of coffee plants, and also took hemispherical photographs to determine canopy openness. In 2014 (wet season), we again gathered data on the same variables. In 2012, we collected soil samples from a subset of the plots. At all plantations, coffee variety had a significant effect on CLR incidence, with the Catimor variety infected less frequently than Caturra. Coffee plant age had a significant positive effect on CLR incidence. Increasing coffee density also increased CLR incidence for some of the studied plantations/seasons. Comparing those plots from which data were collected in the dry and wet seasons, we found that CLR presence was significantly higher in the wet season. The effect of shade on CLR incidence was not clear. Catimor and Caturra varieties showed opposite trends of CLR incidence in response to shade quantity in most cases (Caturra variety CLR incidence was decreasing with shading increase and Catimor CLR incidence decreasing with decreasing shading). Finally, the soil properties did not affect CLR incidence. © 2017 Springer Science+Business Media B.V.


Samonil P.,The Silva Tarouca Research Institute | Danek P.,The Silva Tarouca Research Institute | Danek P.,Masaryk University | Schaetzl R.J.,Michigan State University | And 3 more authors.
European Journal of Soil Science | Year: 2015

The purpose of this study was to identify general patterns of pedoturbation by tree uprooting in three different, forested landscapes and to quantify post-disturbance pedogenesis. Specifically, our study illustrates how the effects of 'tree-throw' on soils gradually become diminished over time by post-uprooting pedogenesis. We studied soil development within 46 pit-mounds in two regions of the Czech Republic, one on Haplic Cambisols and one on Entic Podzols. A third study site was in Michigan, USA, on Albic Podzols. Uprooting events were dated by using tree censuses, dendrochronology and radiometry. These dates provided information on several chronosequences of pedogenesis in the post-uprooting pits and mounds, dating back to 1816 AD (dendrochronological dating, Haplic Cambisols), 322 AD (median of calibration age, 14C age = 1720 ± 35 BP, Entic Podzols) and 4077 BC (14C age = 5260 ± 30 BP, Albic Podzols). Post-uprooting pedogenesis was most rapid in pits and slowest on mounds. Linear chronofunction models were the most applicable for pedogenesis, regardless of whether the soils were in pit or mound microsites. These models allowed us to estimate the time required for horizons in such disturbed sites to obtain the equivalent thicknesses of those in undisturbed sites. These ranged from 5 (O horizon in pits on the Haplic Cambisols) to > 16 000 years (E horizon on mounds on the Albic Podzols). On the Albic Podzols, development of eluvial and spodic horizon thicknesses suggested that pathways involving divergent pedogenesis may occur at these small and localized spatial scales. © 2015 British Society of Soil Science.

Loading The Silva Tarouca Research Institute collaborators
Loading The Silva Tarouca Research Institute collaborators