Entity

Time filter

Source Type


Kullo I.J.,Mayo Medical School | Haddad R.,Mayo Medical School | Prows C.A.,Cincinnati Childrens Hospital Medical Center | Holm I.,Boston Childrens Hospital | And 11 more authors.
Frontiers in Genetics | Year: 2014

The electronic Medical Records and Genomics (eMERGE) (Phase I) network was established in 2007 to further genomic discovery using biorepositories linked to the electronic health record (EHR). In Phase II, which began in 2011, genomic discovery efforts continue and in addition the network is investigating best practices for implementing genomic medicine, in particular, the return of genomic results in the EHR for use by physicians at point-of-care. To develop strategies for addressing the challenges of implementing genomic medicine in the clinical setting, the eMERGE network is conducting studies that return clinically-relevant genomic results to research participants and their health care providers. These genomic medicine pilot studies include returning individual genetic variants associated with disease susceptibility or drug response, as well as genetic risk scores for common "complex" disorders. Additionally, as part of a network-wide pharmacogenomics-related project, targeted resequencing of 84 pharmacogenes is being performed and select genotypes of pharmacogenetic relevance are being placed in the EHR to guide individualized drug therapy. Individual sites within the eMERGE network are exploring mechanisms to address incidental findings generated by resequencing of the 84 pharmacogenes. In this paper, we describe studies being conducted within the eMERGE network to develop best practices for integrating genomic findings into the EHR, and the challenges associated with such work. © 2014 Kullo, Haddad, Prows, Holm, Sanderson, Garrison, Sharp, Smith, Kuivaniemi, Bottinger, Connolly, Keating, McCarty, Williams and Jarvik. Source


Verma S.S.,Pennsylvania State University | de Andrade M.,Mayo Medical School | Tromp G.,The Sigfried and Janet Weis Center for Research | Kuivaniemi H.,The Sigfried and Janet Weis Center for Research | And 15 more authors.
Frontiers in Genetics | Year: 2014

The electronic MEdical Records and GEnomics (eMERGE) network brings together DNA biobanks linked to electronic health records (EHRs) from multiple institutions. Approximately 51,000 DNA samples from distinct individuals have been genotyped using genome-wide SNP arrays across the nine sites of the network. The eMERGE Coordinating Center and the Genomics Workgroup developed a pipeline to impute and merge genomic data across the different SNP arrays to maximize sample size and power to detect associations with a variety of clinical endpoints. The 1000 Genomes cosmopolitan reference panel was used for imputation. Imputation results were evaluated using the following metrics: accuracy of imputation, allelic R2 (estimated correlation between the imputed and true genotypes), and the relationship between allelic R2 and minor allele frequency. Computation time and memory resources required by two different software packages (BEAGLE and IMPUTE2) were also evaluated. A number of challenges were encountered due to the complexity of using two different imputation software packages, multiple ancestral populations, and many different genotyping platforms. We present lessons learned and describe the pipeline implemented here to impute and merge genomic data sets. The eMERGE imputed dataset will serve as a valuable resource for discovery, leveraging the clinical data that can be mined from the EHR. © 2014 Verma, de Andrade, Tromp, Kuivaniemi, Pugh, Namjou-Khales, Mukherjee, Jarvik, Kottyan, Burt, Bradford, Armstrong, Derr, Crawford, Haines, Li, Crosslin and Ritchie. Source


Mo H.,Vanderbilt University | Thompson W.K.,NorthShore University HealthSystem | Rasmussen L.V.,Northwestern University | Pacheco J.A.,Northwestern University | And 26 more authors.
Journal of the American Medical Informatics Association | Year: 2015

Background Electronic health records (EHRs) are increasingly used for clinical and translational research through the creation of phenotype algorithms. Currently, phenotype algorithms are most commonly represented as noncomputable descriptive documents and knowledge artifacts that detail the protocols for querying diagnoses, symptoms, procedures, medications, and/or text-driven medical concepts, and are primarily meant for human comprehension. We present desiderata for developing a computable phenotype representation model (PheRM). Methods A team of clinicians and informaticians reviewed common features for multisite phenotype algorithms published in PheKB.org and existing phenotype representation platforms. We also evaluated well-known diagnostic criteria and clinical decision-making guidelines to encompass a broader category of algorithms. Results We propose 10 desired characteristics for a flexible, computable PheRM: (1) structure clinical data into queryable forms; (2) recommend use of a common data model, but also support customization for the variability and availability of EHR data among sites; (3) support both humanreadable and computable representations of phenotype algorithms; (4) implement set operations and relational algebra for modeling phenotype algorithms; (5) represent phenotype criteria with structured rules; (6) support defining temporal relations between events; (7) use standardized terminologies and ontologies, and facilitate reuse of value sets; (8) define representations for text searching and natural language processing; (9) provide interfaces for external software algorithms; and (10) maintain backward compatibility. Conclusion A computable PheRM is needed for true phenotype portability and reliability across different EHR products and healthcare systems. These desiderata are a guide to inform the establishment and evolution of EHR phenotype algorithm authoring platforms and languages. © The Author 2015. Source


Crawford D.C.,Vanderbilt University | Crosslin D.R.,University of Washington | Tromp G.,The Sigfried and Janet Weis Center for Research | Kullo I.J.,The Gonda Vascular Center | And 9 more authors.
Frontiers in Genetics | Year: 2014

The electronic MEdical Records & GEnomics (eMERGE) network was established in 2007 by the National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH) in part to explore the utility of electronic medical records (EMRs) in genome science. The initial focus was on discovery primarily using the genome-wide association paradigm, but more recently, the network has begun evaluating mechanisms to implement new genomic information coupled to clinical decision support into EMRs. Herein, we describe this evolution including the development of the individual and merged eMERGE genomic datasets, the contribution the network has made toward genomic discovery and human health, and the steps taken toward the next generation genotype-phenotype association studies and clinical implementation. © 2014 Crawford, Crosslin, Tromp, Kullo, Kuivaniemi, Hayes, Denny, Bush, Haines, Roden, McCarty, Jarvik and Ritchie. Source


Crosslin D.R.,University of Washington | Tromp G.,The Sigfried and Janet Weis Center for Research | Burt A.,University of Washington | Kim D.S.,University of Washington | And 11 more authors.
Frontiers in Genetics | Year: 2014

Combining samples across multiple cohorts in large-scale scientific research programs is often required to achieve the necessary power for genome-wide association studies. Controlling for genomic ancestry through principal component analysis (PCA) to address the effect of population stratification is a common practice. In addition to local genomic variation, such as copy number variation and inversions, other factors directly related to combining multiple studies, such as platform and site recruitment bias, can drive the correlation patterns in PCA. In this report, we describe combination and analysis of multi-ethnic cohort with biobanks linked to electronic health records for large-scale genomic association discovery analyses. First, we outline the observed site and platform bias, in addition to ancestry differences. Second, we outline a general protocol for selecting variants for input into the subject variance-covariance matrix, the conventional PCA approach. Finally, we introduce an alternative approach to PCA by deriving components from subject loadings calculated from a reference sample. This alternative approach of generating principal components controlled for site and platform bias, in addition to ancestry differences, with the advantage of fewer covariates and degrees of freedom. Source

Discover hidden collaborations