The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation
Roskilde, Denmark

The Royal Danish Academy of Fine Arts has provided a practice-oriented complement to the scholarly investigation of the arts carried out at Danish universities for more than 250 years, playing a crucial part in the development of the distinctive tradition of the art of Denmark. Wikipedia.

Time filter
Source Type

Laustsen A.H.,Copenhagen University | Gutierrez J.M.,University of Costa Rica | Rasmussen A.R.,The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation | Engmark M.,Technical University of Denmark | And 4 more authors.
Toxicon | Year: 2015

Four specimens of the olive sea snake, Aipysurus laevis, were collected off the coast of Western Australia, and the venom proteome was characterized and quantitatively estimated by RP-HPLC, SDS-PAGE, and MALDI-TOF-TOF analyses. A. laevis venom is remarkably simple and consists of phospholipases A2 (71.2%), three-finger toxins (3FTx; 25.3%), cysteine-rich secretory proteins (CRISP; 2.5%), and traces of a complement control module protein (CCM; 0.2%). Using a Toxicity Score, the most lethal components were determined to be short neurotoxins. Whole venom had an intravenous LD50 of 0.07 mg/kg in mice and showed a high phospholipase A2 activity, but no proteinase activity in vitro. Preclinical assessment of neutralization and ELISA immunoprofiling showed that BioCSL Sea Snake Antivenom was effective in cross-neutralizing A. laevis venom with an ED50 of 821 μg venom per mL antivenom, with a binding preference towards short neurotoxins, due to the high degree of conservation between short neurotoxins from A. laevis and Enhydrina schistosa venom. Our results point towards the possibility of developing recombinant antibodies or synthetic inhibitors against A. laevis venom due to its simplicity. © 2015 Elsevier Ltd. All rights reserved.

Sanders K.L.,University of Adelaide | Rasmussen A.R.,The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation | Elmberg J.,Kristianstad University College
Integrative and Comparative Biology | Year: 2012

The viviparous sea snakes (Hydrophiinae) comprise ∼90% of living marine reptiles and display many physical and behavioral adaptations for breathing, diving, and achieving osmotic balance in marine habitats. Among the most important innovations found in marine snakes are their paddle-shaped (dorsoventrally expanded) tails, which provide propulsive thrust in the dense aquatic medium. Here, we reconstruct the evolution of caudal paddles in viviparous sea snakes using a dated molecular phylogeny for all major lineages and computed tomography of internal osteological structures. Bayesian ancestral state reconstructions show that extremely large caudal paddles supported by elongated vertebral processes are unlikely to have been present in the most recent common ancestor of extant sea snakes. Instead, these characters appear to have been acquired independently in two highly marine lineages of relatively recent origin. Both the Aipysurus and Hydrophis lineages have elongated neural spines that support the dorsal edge of their large paddles. However, whereas in the Aipysurus lineage the ventral edge of the paddle is supported by elongated haemapophyses, this support is provided by elongated and ventrally directed pleurapophyses in the Hydrophis lineage. Three semi-marine lineages (Hydrelaps, Ephalophis, and Parahydrophis) form the sister group to the Hydrophis clade and have small paddles with poorly developed dorsal and ventral supports, consistent with their amphibious lifestyle. Overall, our results suggest that not only are the viviparous hydrophiines the only lineage of marine snakes to have acquired extremely large, skeletally supported caudal paddles but also that this innovation has occurred twice in the group in the past ∼2-6 million years. © 2012 The Author.

Sanders K.L.,University of Adelaide | Lee M.S.Y.,South Australian Museum | Mumpuni,Indonesian Institute of Sciences | Bertozzi T.,South Australian Museum | Rasmussen A.R.,The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation
Molecular Phylogenetics and Evolution | Year: 2013

The viviparous sea snakes (Hydrophiinae: Hydrophiini) comprise a young but morphologically and ecologically diverse clade distributed throughout the Indo-Pacific. Despite presenting a very promising model for marine diversification studies, many relationships among the 62 species and 16 genera in Hydrophiini remain unresolved. Here, we extend previous taxonomic and genomic sampling for Hydrophiini using three mitochondrial fragments and five nuclear loci for multiple individuals of 39 species in 15 genera. Our results highlight many of the impediments to inferring phylogenies in recent rapid radiations, including low variation at all five nuclear markers, and conflicting relationships supported by mitochondrial and nuclear trees. However, concatenated Bayesian and likelihood analyses, and a multilocus coalescent tree, recovered concordant support for primary clades and several previously unresolved inter-specific groupings. The Aipysurus group is monophyletic, with egg-eating specialists forming separate, early-diverging lineages. All three monotypic semi-aquatic genera (Ephalophis, Parahydrophis and Hydrelaps) are robustly placed as early diverging lineages along the branch leading to the Hydrophis group, with Ephalophis recovered as sister to Parahydrophis. The molecular phylogeny implies extensive evolutionary convergence in feeding adaptations within the Hydrophis group, especially the repeated evolution of small-headed (microcephalic) forms. Microcephalophis (Hydrophis) gracilis is robustly recovered as a relatively distant sister lineage to all other sampled Hydrophis group species, here termed the 'core Hydrophis group'. Within the 'core Hydrophis group', Hydrophis is recovered as broadly paraphyletic, with several other genera nested within it (Pelamis, Enhydrina, Astrotia, Thalassophina, Acalyptophis, Kerilia, Lapemis, Disteira). Instead of erecting multiple new genera, we recommend dismantling the latter (mostly monotypic) genera and recognising a single genus, Hydrophis Latreille 1802, for the core Hydrophis group. Estimated divergence times suggest that all Hydrophiini last shared a common ancestor ∼6. million years ago, but that the majority of extant lineages diversified over the last ∼3.5. million years. The core Hydrophis group is a young and rapidly speciating clade, with 26 sampled species and 9 genera and dated at only ∼1.5-3. million years old. © 2012 Elsevier Inc.

Agency: European Commission | Branch: FP7 | Program: CP | Phase: EeB.ENV.2010.3.2.4-1 | Award Amount: 6.70M | Year: 2010

The project 3ENCULT bridges the gap between conservation of historic buildings and climate protection, which is not an antagonism at all: historic buildings will only survive if maintained as living space. Energy efficient retrofit is useful for structural protection as well as for comfort reasons - comfort for users and comfort for heritage collections. The joint task of conservation and energy efficient retrofit is highly interdisciplinary. The 3ENCULT consortium consists of scientists and stakeholders, especially on the level of SMEs, from the fields of diagnostics, conservation, building physics, sustainability, architecture and lighting up to cybernetics, thus guaranteeing both, the development of sustainable solutions and the impact on European economy. Eight case studies will demonstrate and verify solutions that are applicable to the majority of European built heritage in urban areas. Building owners and local historic preservation agencies are integrated in local case study teams. 3ENCULT will demonstrate the feasibility of Factor 4 to Factor 10 reduction in energy demand, depending on the case and the heritage value. The main objectives are the development of passive and active solutions for conservation and energy efficient retrofit including available products as well as new developments by involved SMEs, the definition of diagnosis and monitoring instruments, the long term monitoring (also for IEQ controlling) and the planning and evaluation tools and concepts supporting the implementation, the quality assurance and control of success of the energy retrofit measures. Guidelines will be disseminated to the scientific and public community. Finally, position papers will be issued suggesting possible integrations and/or implementations of the present regulation framework for improving energy efficiency of historic buildings in urban areas and in particular EPBD and Environmental Impact Assessment as well as Aalborg Commitments and Leipzig Charter.

Sanders K.L.,University of Adelaide | Rasmussen A.R.,The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation | Guinea M.L.,Charles Darwin University
Biological Conservation | Year: 2014

The viviparous sea snakes include 62 ecologically diverse species, many of which are of very recent evolutionary origin and have overlapping distributions. Peak sea snake diversity and endemism is recorded from the isolated emergent reefs of the Timor Sea in Northwest Australia. However, nine species have disappeared from Ashmore, the largest of these reefs, over the last 15. years, including two critically endangered Aipysurus species that have also disappeared from neighbouring Hibernia Reef. A third Timor Sea endemic, Aipysurus fuscus, is now known only from Scott and Hibernia reefs, where it coexists with closely related and locally abundant Aipysurus laevis. We analysed microsatellite markers for A. fuscus and A. laevis sampled across four Timor Sea reefs to assess evidence for recent inter-specific gene flow and historical introgression. Our data fit an Isolation-Migration model, which showed significant and asymmetrical levels of gene flow following species divergence, and highest rates of introgression from the large A. laevis population into the much smaller A. fuscus population. Population assignment analyses recovered two ancestral clusters that broadly corresponded to morphological species designations, but revealed high frequencies of hybrids on all four reefs and individuals of pure A. fuscus ancestry only at Scott and (historically) Ashmore. Most unexpectedly, 95% of snakes sampled at Hibernia were hybrids that resembled A. laevis in phenotype, revealing a collapse of reproductive barriers ('reverse speciation') at this reef. These results have dire implications for the conservation status of A. fuscus, and highlight the fragility of reproductive barriers in a recent marine radiation. © 2014 Elsevier Ltd.

Agency: European Commission | Branch: FP7 | Program: CP | Phase: ICT-2011.4.3 | Award Amount: 3.78M | Year: 2013

Along with the paradigm shift that changed the way of architectural drafting from 2D analog plans and scale models over 2D digital plans to complex digital 3D models, the importance for libraries, museums, and archives for long-term preservation of architectural digital 3D models was recognized some years ago. To this end, research projects trying to set up a process to capture, describe, manage, preserve, and make available digital CAD models created by architects during building projects were established in the United States as well as in Europe. Despite the shift from analog to digital representations, the access mechanisms of current long-term archiving systems in the architectural domain are still based on simple metadata schemes inherited from the analog world and therefore limited in the same way as searching with a card index in the analog age. The potential inherent in a full digital representation is not exploited so far as detailed semantic information in the digital documents is either not available or simply not used for retrieval. In the DuraArK project we will develop a long-term preservation system for architectural content that will overcome these shortcomings. It will allow searching and accessing data on different semantic levels going far beyond the possibilities of currently used metadata schemes. At the same time, it will provide secure and future-proof data storage by tackling the problems arising from digital decay.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: FETPROACT-2-2014 | Award Amount: 3.64M | Year: 2015

This projects objective is to develop and to investigate closely linked symbiotic relationships between robots and natural plants and to explore the potentials of a plant-robot society able to produce architectural artifacts and living spaces. We will create a society of robot-plant bio-hybrids functioning as an embodied, self-organizing, and distributed cognitive system. The system grows and develops over long periods of time in interactions with humans resulting in the creation of meaningful architectural structures. The robotic assemblies (artificial plants) support and control the biological plants through appropriate scaffolding, watering, and stimuli that exploit the plants different tropisms. The natural plant, in turn, supports and controls the robotic plant by guiding it through growth and support the weight of the robot in later growth phases. The artificial plants are built from small heterogeneous sensing and actuation modules connected using lightweight construction elements. Each robotic plant connects wirelessly to the Internet. In contrast to top-down control, we explore a developmental plasticity of bio-hybrid systems, where robots and plans grow together from sprout to adult stage and form a closely co-dependent and self-organized system. The robot-plant organisms live in a human-inhabited environment and through interaction with humans grow into architectural structures (e.g., walls, roofs, benches) providing functionality such as shade, air quality control, and stress relief. Humans, plants, and robots form an internet-connected social garden where desired structures and behavior patterns emerge based on both local interactions and global interaction with parts of the garden growing at other locations. Hence, the social garden is a cultural system that shows long-term learning and adaptation where all past actions and interactions between the natural and artificial plants are represented in the embodiment of the garden.

Bertram P.,The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation
Open House International | Year: 2015

A problem is typically defined prior to an architectural process and the result is seen as a solution. The process as a whole is conceived as problem solving. However, the artistic element of the process is inseparable from constructing the problem. From the artistic point of view the solution is merely a derivative. Conventional understanding of artistic creation is sometimes coloured by the misconception that invention first and foremost takes place in the mind of the artist parallel or prior to the actual process. However, as far as the artistic element in an architectural process is concerned the problem cannot be abstracted from the specificity of the material, the drawings, models etc., which constitutes the project under development. The problem is an immanent relational field and invention is triggered by the difference between maker and architectural media. The aim of the paper is to portray the artistic practice as a learning process different from communication of knowledge. It proposes a kind of leaning not about improvement of skills and competences but rather concerned with the dynamics of a material field. It emphasises the role of technique and presents architectural media as the prime material field investigated by the process. The discussion uses examples of assignments and student projects developed under my supervision to demonstrate how a problem field is framed by the ordering of techniques.

Popovic Larsen O.,The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation
Nexus Network Journal | Year: 2014

The paper presents the opportunities and challenges of reciprocal frame (RF) structures. These are discussed through some recently built, innovative examples such as the Mount Rokko-Shidare Observatory in Japan and the Kreod Pavilion in UK, as well as through the explorations with physical models in both small and full scale carried out over the last few years at The Royal Danish Academy of Fine Arts School of Architecture in Copenhagen. The RF structure gives the potential for achieving novel and expressive curved three-dimensional complex forms, using straight members. At the same time, it offers the possibility for fast and simple construction using low-tech techniques and simple joints. This makes it a possible solution for many types of applications, ranging from short-span canopies, to geometrically complex structural forms, to rapidly constructed emergency shelters after disasters. No other structural system can offer the same level of variability and scope for different applications. © 2014 Kim Williams Books, Turin.

Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 3.97M | Year: 2015

The InnoChain ETN network is a shared research training environment examining how advances in digital design tools challenge building culture enabling more sustainable, more informed and more materially smart design solutions. The network aims to train a new generation of interdisciplinary researchers with a strong industry focus that can effect real changes in the way we think, design and build our physical environment. The programme investigates the extended digital chain as a particular opportunity for interdisciplinary design collaboration. Challenging the traditional thinking of design as a linear process of incremental refinement, InnoChain identifies three axes of design innovation potential communication, simulation and materialisation appearing as distributed and interdisciplinary activities across the design chain. Situating feedback between design processes as a key concern for developing holistic and integrated design methods, the network will develop new interdisciplinary design methods that integrate advanced simulation and interface with material fabrication. With a strong inter-sector focus, InnoChain connects research in practice with research in academia. Assembling 6 internationally recognised academic research environments leading research into computational design in architecture and engineering and 14 innovation pioneering industry partners from architecture, engineering, design software development and fabrication, the programme will establish a shared training platform for 15 early stage researchers. The network creates a structured training programme focussed on supervision of individual research projects, an inter-sector secondment programme as well as collective research events including workshop-seminars, colloquia, summer school and research courses that provide a unique opportunity for young researchers to obtain new knowledge and skills positioning them between strong innovative research practice and influential industrial impact.

Loading The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation collaborators
Loading The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation collaborators