Honolulu, HI, United States
Honolulu, HI, United States

Time filter

Source Type

Patent
The Queens Medical Center | Date: 2016-11-22

Disclosed herein is a removable cap for connection to an input port of a catheter, comprising a proximal end having a lumen configured to house a guidewire therethrough; a distal end configured to reversibly mate with a luer lock of the input port of a catheter, the distal end having a lumen configured to house the guidewire therethrough; and a tubular body between the proximal end and the distal end, wherein the tubular body comprises an anti-migration feature transformable between a first configuration to allow slidable movement of the guidewire within the cap in a first direction toward the patient, and a second configuration to prevent slidable movement of the guidewire within the cap in the first direction toward the patient. Systems and methods are also disclosed.


Patent
The Queens Medical Center, The University Of Hawaii, Medical College of Wisconsin and INC Research | Date: 2017-01-18

This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or pose, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P). This invention also provides for internal calibration and for co-registration over time of the scanners and tracking systems reference frames to compensate for drift and other inaccuracies that may arise over time.


Patent
The Queens Medical Center, University of Hawaii at Manoa, Medical College of Wisconsin and INC Research | Date: 2015-04-28

This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or pose, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P). This invention also provides for internal calibration and for co-registration over time of the scanners and tracking systems reference frames to compensate for drift and other inaccuracies that may arise over time.


Patent
The Queens Medical Center, INC Research, Medical College of Wisconsin and University of Hawaii at Manoa | Date: 2013-09-23

This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or pose, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P). This invention also provides for internal calibration and for co-registration over time of the scanners and tracking systems reference frames to compensate for drift and other inaccuracies that may arise over time.


Patent
The Queens Medical Center, University of Hawaii at Manoa, Medical College of Wisconsin and INC Research | Date: 2015-08-17

This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or pose, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P). This invention also provides for internal calibration and for co-registration over time of the scanners and tracking systems reference frames to compensate for drift and other inaccuracies that may arise over time.


Patent
The Queens Medical Center, INC Research, Medical College of Wisconsin and University of Hawaii at Manoa | Date: 2013-01-07

This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or pose, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P). This invention also provides for internal calibration and for co-registration over time of the scanners and tracking systems reference frames to compensate for drift and other inaccuracies that may arise over time.


Patent
The Queens Medical Center | Date: 2015-02-25

Disclosed herein is a removable cap for connection to an input port of a catheter, comprising a proximal end having a lumen configured to house a guidewire therethrough; a distal end configured to reversibly mate with a luer lock of the input port of a catheter, the distal end having a lumen configured to house the guidewire therethrough; and a tubular body between the proximal end and the distal end, wherein the tubular body comprises an anti-migration feature transformable between a first configuration to allow slidable movement of the guidewire within the cap in a first direction toward the patient, and a second configuration to prevent slidable movement of the guidewire within the cap in the first direction toward the patient. Systems and methods are also disclosed.


Patent
Kineticor, The University Of Hawii and The Queens Medical Center | Date: 2014-01-29

The disclosure herein provides methods, systems, and devices for tracking motion of a patient or object of interest during biomedical imaging and for compensating for that motion in the biomedical imaging scanner and/or the resulting images to reduce or eliminate motion artifacts. In an embodiment, a motion tracking system is configured to overlay tracking data over biomedical imaging data in order to display the tracking data along with its associated image data. In an embodiment, a motion tracking system is configured to overlay tracking data over biomedical imaging data in order to display the tracking data along with its associated image data. In an embodiment, one or more detectors are configured to detect images of a patient, and a detector processing interface is configured to analyze the images to estimate motion or movement of the patient and to generate tracking data describing the patients motion. The detector processing interface is configured to send the tracking data to a scanner controller to enable adjustment of scanning parameters in real-time in response to the patients motion.


Patent
The Queens Medical Center | Date: 2013-10-02

Disclosed herein is a removable cap for connection to an input port of a catheter, comprising a proximal end having a lumen configured to house a guidewire therethrough; a distal end configured to reversibly mate with a luer lock of the input port of a catheter, the distal end having a lumen configured to house the guidewire therethrough; and a tubular body between the proximal end and the distal end, wherein the tubular body comprises an anti-migration feature transformable between a first configuration to allow slidable movement of the guidewire within the cap in a first direction toward the patient, and a second configuration to prevent slidable movement of the guidewire within the cap in the first direction toward the patient. Systems and methods are also disclosed.


Patent
The Queens Medical Center | Date: 2010-08-17

The present disclosure provides methods of synthesizing alkylating agents and methods of use.

Loading The Queens Medical Center collaborators
Loading The Queens Medical Center collaborators