Woking, United Kingdom
Woking, United Kingdom

Time filter

Source Type

PubMed | 1 The Pirbright Institute and University of Heidelberg
Type: Journal Article | Journal: The Journal of general virology | Year: 2016

Picornaviruses form replication complexes in association with membranes in structures called replication organelles. Common themes to emerge from studies of picornavirus replication are the need for cholesterol and phosphatidylinositol 4-phosphate (PI4P). In infected cells, type III phosphatidylinositol 4-kinases (PI4KIIIs) generate elevated levels of PI4P, which is then exchanged for cholesterol at replication organelles. For the enteroviruses, replication organelles form at Golgi membranes in a process that utilizes PI4KIII. Other picornaviruses, for example the cardioviruses, are believed to initiate replication at the endoplasmic reticulum and subvert PI4KIII to generate PI4P. Here we investigated the role of PI4KIII in foot-and-mouth disease virus (FMDV) replication. Our results showed that, in contrast to the enteroviruses and the cardioviruses, FMDV replication does not require PI4KIII (PI4KIII and PI4KIII), and PI4P levels do not increase in FMDV-infected cells and PI4P is not seen at replication organelles. These results point to a unique requirement towards lipids at the FMDV replication membranes.


PubMed | 1 The Pirbright Institute, Merial Limited and CSIRO
Type: Journal Article | Journal: The Journal of general virology | Year: 2016

Antibodies play a pivotal role against viral infection, and maintenance of protection is dependent on plasma and memory B-cells. Understanding antigen-specific B-cell responses in cattle is essential to inform future vaccine design. We have previously defined T-cell-dependent and -independent B-cell responses in cattle, as a prelude to investigating foot-and-mouth-disease-virus (FMDV)-specific B-cell responses. In this study, we have used an FMDV O-serotype vaccination (O1-Manisa or O SKR) and live-virus challenge (FMDV O SKR) to investigate the homologous and heterologous B-cell response in cattle following both vaccination and live-virus challenge. The FMDV O-serotype vaccines were able to induce a cross-reactive plasma-cell response, specific for both O1-Manisa and O SKR, post-vaccination. Post-FMDV O SKR live-virus challenge, the heterologous O1-Manisa vaccination provided cross-protection against O SKR challenge and cross-reactive O SKR-specific plasma cells were induced. However, vaccination and live-virus challenge were not able to induce a detectable FMDV O-serotype-specific memory B-cell response in any of the cattle. The aim of new FMDV vaccines should be to induce memory responses and increased duration of immunity in cattle.

Loading 1 The Pirbright Institute collaborators
Loading 1 The Pirbright Institute collaborators