Entity

Time filter

Source Type

East Melbourne, Australia

Southey M.C.,University of Melbourne | Southey M.C.,The Peter MacCallum Cancer Center | Teo Z.L.,University of Melbourne | Dowty J.G.,University of Melbourne | And 16 more authors.
Breast Cancer Research | Year: 2010

Introduction: As a group, women who carry germline mutations in partner and localizer of breast cancer 2 susceptibility protein (PALB2) are at increased risk of breast cancer. Little is known about by how much or whether risk differs by mutation or family history, owing to the paucity of studies of cases unselected for family history.Methods: We screened 1,403 case probands for PALB2 mutations in a population-based study of Australian women with invasive breast cancer stratified by age at onset. The age-specific risk of breast cancer was estimated from the cancer histories of first- and second-degree relatives of mutation-carrying probands using a modified segregation analysis that included a polygenic modifier and was conditioned on the carrier case proband. Further screening for PALB2 c.3113G > A (W1038X) was conducted for 779 families with multiple cases of breast cancer ascertained through family cancer clinics in Australia and New Zealand and 764 population-based controls.Results: We found five independent case probands in the population-based sample with the protein-truncating mutation PALB2 c.3113G > A (W1038X); 2 of 695 were diagnosed before age 40 years and 3 of 708 were diagnosed when between ages 40 and 59 years. Both of the two early-onset carrier case probands had very strong family histories of breast cancer. Further testing found that the mutation segregated with breast cancer in these families. No c.3113G > A (W1038X) carriers were found in 764 population-based unaffected controls. The hazard ratio was estimated to be 30.1 (95% confidence interval (CI), 7.5 to 120; P < 0.0001), and the corresponding cumulative risk estimates were 49% (95% CI, 15 to 93) to age 50 and 91% (95% CI, 44 to 100) to age 70. We found another eight families carrying this mutation in 779 families with multiple cases of breast cancer ascertained through family cancer clinics.Conclusions: The PALB2 c.3113G > A mutation appears to be associated with substantial risks of breast cancer that are of clinical relevance. © 2010 Southey et al.; licensee BioMed Central Ltd. Source


West A.C.,The Peter MacCallum Cancer Center | Christiansen A.J.,ETH Zurich | Smyth M.J.,The Peter MacCallum Cancer Center | Smyth M.J.,University of Melbourne | And 2 more authors.
OncoImmunology | Year: 2012

The use of immunotherapy to treat cancer is rapidly gaining momentum. Using pre-clinical mouse models, we have recently demonstrated potent and long lasting tumor regression can be elicited by immune-stimulating monoclonal antibodies (mAbs) when combined with histone deacetylase inhibitors (HDACi) and believe this therapy will have broad application in humans. © 2012 Landes Bioscience. Source


Ramsbottom K.M.,The Peter MacCallum Cancer Center
Immunology and Cell Biology | Year: 2015

Lethal giant larvae-1 (Lgl-1) is an evolutionary conserved protein that regulates cell polarity in diverse lineages; however, the role of Lgl-1 in the polarity and function of immune cells remains to be elucidated. To assess the role of Lgl-1 in T cells, we generated chimeric mice with a hematopoietic system deficient for Lgl-1. Lgl-1 deficiency did not impair the activation or function of peripheral CD8+ T cells in response to antigen presentation in vitro, but did skew effector and memory T-cell differentiation. When challenged with antigen-expressing virus or tumor, Lgl-1-deficient mice displayed altered T-cell responses. This manifested in a stronger antiviral and antitumor effector CD8+ T-cell response, the latter resulting in enhanced control of MC38-OVA tumors. These results reveal a novel role for Lgl-1 in the regulation of virus-specific T-cell responses and antitumor immunity.Immunology and Cell Biology advance online publication, 22 September 2015; doi:10.1038/icb.2015.82. © 2015 Australasian Society for Immunology Inc. Source


Falkenberg K.J.,The Peter MacCallum Cancer Center
Cell Death and Differentiation | Year: 2016

Vorinostat is an FDA-approved histone deacetylase inhibitor (HDACi) that has proven clinical success in some patients; however, it remains unclear why certain patients remain unresponsive to this agent and other HDACis. Constitutive STAT (signal transducer and activator of transcription) activation, overexpression of prosurvival Bcl-2 proteins and loss of HR23B have been identified as potential biomarkers of HDACi resistance; however, none have yet been used to aid the clinical utility of HDACi. Herein, we aimed to further elucidate vorinostat-resistance mechanisms through a functional genomics screen to identify novel genes that when knocked down by RNA interference (RNAi) sensitized cells to vorinostat-induced apoptosis. A synthetic lethal functional screen using a whole-genome protein-coding RNAi library was used to identify genes that when knocked down cooperated with vorinostat to induce tumor cell apoptosis in otherwise resistant cells. Through iterative screening, we identified 10 vorinostat-resistance candidate genes that sensitized specifically to vorinostat. One of these vorinostat-resistance genes was GLI1, an oncogene not previously known to regulate the activity of HDACi. Treatment of vorinostat-resistant cells with the GLI1 small-molecule inhibitor, GANT61, phenocopied the effect of GLI1 knockdown. The mechanism by which GLI1 loss of function sensitized tumor cells to vorinostat-induced apoptosis is at least in part through interactions with vorinostat to alter gene expression in a manner that favored apoptosis. Upon GLI1 knockdown and vorinostat treatment, BCL2L1 expression was repressed and overexpression of BCL2L1 inhibited GLI1-knockdown-mediated vorinostat sensitization. Taken together, we present the identification and characterization of GLI1 as a new HDACi resistance gene, providing a strong rationale for development of GLI1 inhibitors for clinical use in combination with HDACi therapy.Cell Death and Differentiation advance online publication, 12 February 2016; doi:10.1038/cdd.2015.175. © 2016 Macmillan Publishers Limited Source


Pinol J.,University of Barcelona | Mir G.,CRAG CSIC IRTA UAB UB | Mir G.,The Peter MacCallum Cancer Center | Gomez-Polo P.,IRTA - Institute of Agricultural-Alimentary Research and Technology | Agusti N.,IRTA - Institute of Agricultural-Alimentary Research and Technology
Molecular Ecology Resources | Year: 2015

The quantification of the biological diversity in environmental samples using high-throughput DNA sequencing is hindered by the PCR bias caused by variable primer-template mismatches of the individual species. In some dietary studies, there is the added problem that samples are enriched with predator DNA, so often a predator-specific blocking oligonucleotide is used to alleviate the problem. However, specific blocking oligonucleotides could coblock nontarget species to some degree. Here, we accurately estimate the extent of the PCR biases induced by universal and blocking primers on a mock community prepared with DNA of twelve species of terrestrial arthropods. We also compare universal and blocking primer biases with those induced by variable annealing temperature and number of PCR cycles. The results show that reads of all species were recovered after PCR enrichment at our control conditions (no blocking oligonucleotide, 45 °C annealing temperature and 40 cycles) and high-throughput sequencing. They also show that the four factors considered biased the final proportions of the species to some degree. Among these factors, the number of primer-template mismatches of each species had a disproportionate effect (up to five orders of magnitude) on the amplification efficiency. In particular, the number of primer-template mismatches explained most of the variation (~3/4) in the amplification efficiency of the species. The effect of blocking oligonucleotide concentration on nontarget species relative abundance was also significant, but less important (below one order of magnitude). Considering the results reported here, the quantitative potential of the technique is limited, and only qualitative results (the species list) are reliable, at least when targeting the barcoding COI region. © 2014 John Wiley & Sons Ltd. Source

Discover hidden collaborations