Entity

Time filter

Source Type

Newbury, United Kingdom

Hathaway-Jenkins L.J.,Cranfield University | Sakrabani R.,Cranfield University | Pearce B.,The Organic Research Center | Whitmore A.P.,Rothamsted Research | Godwin R.J.,Cranfield University
Soil Use and Management | Year: 2011

Organic farming and improvements to agricultural sustainability are often seen as synonymous. However, an extensive European review demonstrated that in practice this is not always true. This study aims to compare the status of soil and water properties between separate fields managed in either an organic or a conventional manner. Soil samples were collected from 16 pairs of farms, throughout England, with both arable and grass fields within each pair on similar soil type. Chemical (nutrients, pesticides, herbicides) and physical (aggregate stability, field capacity, shear strength, soil organic matter, infiltration rates) soil properties were measured in four main soil texture classes in organic and conventional fields. The physical soil properties varied significantly between the different classes of texture and land use. The heavier textured soils have significantly higher soil organic carbon (SOC), aggregate stability and shear strength. The coarse-textured soils have significantly lower field capacity moisture contents. The grassland has a significantly higher level of SOC, field capacity moisture content, aggregate stability and soil shear strength. However, there were no significant differences between organic and conventional treatments for any of the soil physical properties measured. There were fewer traces of agrochemicals in the soil water from the organic fields compared with the conventionally managed fields. The conventional arable fields had higher levels of total inorganic nitrogen than the other land uses and treatments. There was evidence to show that infiltration rates were significantly higher on organically managed grassland soils (7.6mm/h) than conventionally managed grassland (2.5mm/h) with lower stocking rates. The results suggest that improved grassland management, whether organic or conventional, could reduce predicted runoff by 28%. © 2011 The Authors. Journal compilation © 2011 British Society of Soil Science. Source


Markussen M.V.,Technical University of Denmark | Kulak M.,Institute for Sustainability science | Smith L.G.,The Organic Research Center | Nemecek T.,Institute for Sustainability science | Ostergard H.,Technical University of Denmark
Sustainability (Switzerland) | Year: 2014

Resource use and environmental impacts of a small-scale low-input organic vegetable supply system in the United Kingdom were assessed by emergy accounting and Life Cycle Assessment (LCA). The system consisted of a farm with high crop diversity and a related box-scheme distribution system. We compared empirical data from this case system with two modeled organic food supply systems representing high- and low-yielding practices for organic vegetable production. Further, these systems were embedded in a supermarket distribution system and they provided the same amount of comparable vegetables at the consumers' door as the case system. The on-farm resource use measured in solar equivalent Joules (seJ) was similar for the case system and the high-yielding model system and higher for the low-yielding model system. The distribution phase of the case system was at least three times as resource efficient as the models and had substantially less environmental impacts when assessed using LCA. The three systems ranked differently for emissions with the high-yielding model system being the worst for terrestrial ecotoxicity and the case system the worst for global warming potential. As a consequence of being embedded in an industrial economy, about 90% of resources (seJ) were used for supporting labor and service. © 2014 by the authors. Source


Doring T.F.,The Organic Research Center | Doring T.F.,Imperial College London | Skellern M.,Rothamsted Research | Watts N.,Rothamsted Research | Cook S.M.,Rothamsted Research
Physiological Entomology | Year: 2012

The pollen beetle Meligethes aeneus Fabricius (Coleoptera, Nitidulidae), a pest of oilseed rape (Brassica napus), is known to respond to coloured stimuli; however, current understanding of the underlying mechanisms of colour choice in this species is limited. In the present study, physiological and behavioural experiments are conducted to determine the response of the pollen beetle to colours in the field. Spectral sensitivity is measured in 10 animals using the electroretinogram technique. Light flashes (100 ms) at varied wavelengths (340-650 nm, 10-nm steps) and at different light intensities are applied to the eye after dark adaptation. In behavioural experiments in the field, 100 water traps of varying colours (from yellow to green to blue with varying amounts of white and black added, and with known spectral reflectance) are set out on a bare soil field in May 2008. The mean spectral sensitivity curve of M. aeneus peaks at 520 nm; however, a model template fitted to the long wavelength tail of the observed curve reveals a peak at approximately 540 nm (green). A secondary sensitivity peak is observed in the ultraviolet (UV) range (370 nm). A total of 2482 pollen beetles are captured in the coloured traps. The results show that the pollen beetles' preference for yellow over other colours can be modelled as a colour opponent mechanism (green versus blue); however, further experiments are needed to specify responses to colours with higher UV reflectance. These findings may be used to optimize trap colours for monitoring to help develop integrated pest management strategies for pollen beetle control. © 2012 The Royal Entomological Society. Source


Doring T.F.,The Organic Research Center
Potato Research | Year: 2011

Plant virus epidemiology provides powerful tools to investigate key factors that contribute to virus epidemics in agricultural crops. When successful, epidemiological approaches help to guide decisions regarding plant protection strategies. A recent example is epidemiological research on Potato virus Y (PVY) in Finnish seed potato production; this study led to the identification of the main PVY vector species and helped to determine the timing of virus transmission. However, pathosystems rarely allow research to produce such clear-cut results. In fact, the notorious complexity of plant virus pathosystems, with multiple interactions between virus, vector, plant and environment, makes them often impenetrable even for advanced epidemiological models. This dynamic complexity questions the universal validity of employing epidemiological models that attempt to single out key factors in plant virus epidemics. Therefore, a complementary approach is needed that acknowledges the partly indeterministic nature of complex and evolving pathosystems. Such an approach is the use of diversity, employing functionally complementary elements that can jointly buffer against environmental changes. I argue that for a wider range of plant production problems, the strategy of combining mechanistic and diversity-based approaches will provide potent and sustainable solutions. In addition, to translate insights from plant virus epidemiology into practice, improvements need to be made in knowledge transfer, both within the scientific community and between researchers and practitioners. Finally, moving towards more appropriate virus control strategies is only possible if economic interests of stakeholders are in line with changing current practices. © 2011 EAPR. Source


Pautasso M.,CNRS Center of Evolutionary and Functional Ecology | Doring T.F.,The Organic Research Center | Garbelotto M.,University of California at Berkeley | Pellis L.,Imperial College London | Jeger M.J.,Imperial College London
European Journal of Plant Pathology | Year: 2012

There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases. This overview addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e. g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods. © 2012 KNPV. Source

Discover hidden collaborations