San Diego, CA, United States
San Diego, CA, United States

Time filter

Source Type

Ros T.,University of Geneva | Baars B.J.,The Neurosciences Institute | Lanius R.A.,University of Western Ontario | Vuilleumier P.,University of Geneva
Frontiers in Human Neuroscience | Year: 2014

Neurofeedback (NFB) is emerging as a promising technique that enables self-regulation of ongoing brain oscillations. However, despite a rise in empirical evidence attesting to its clinical benefits, a solid theoretical basis is still lacking on the manner in which NFB is able to achieve these outcomes. The present work attempts to bring together various concepts from neurobiology, engineering, and dynamical systems so as to propose a contemporary theoretical framework for the mechanistic effects of NFB. The objective is to provide a firmly neurophysiological account of NFB, which goes beyond traditional behaviorist interpretations that attempt to explain psychological processes solely from a descriptive standpoint whilst treating the brain as a “black box”. To this end, we interlink evidence from experimental findings that encompass a broad range of intrinsic brain phenomena: starting from “bottom-up” mechanisms of neural synchronization, followed by “top-down” regulation of internal brain states, moving to dynamical systems plus control-theoretic principles, and concluding with activity-dependent as well as homeostatic forms of brain plasticity. In support of our framework, we examine the effects of NFB in several brain disorders, including attention-deficit hyperactivity (ADHD) and post-traumatic stress disorder (PTSD). In sum, it is argued that pathological oscillations emerge from an abnormal formation of brain-state attractor landscape(s). The central thesis put forward is that NFB tunes brain oscillations toward a homeostatic set-point which affords an optimal balance between network flexibility and stability (i.e., self-organised criticality (SOC)). © 2014 Ros, Baars, Lanius and Vuilleumier.

Madl T.,University of Vienna | Baars B.J.,The Neurosciences Institute | Franklin S.,University of Memphis
PLoS ONE | Year: 2011

We propose that human cognition consists of cascading cycles of recurring brain events. Each cognitive cycle senses the current situation, interprets it with reference to ongoing goals, and then selects an internal or external action in response. While most aspects of the cognitive cycle are unconscious, each cycle also yields a momentary "ignition" of conscious broadcasting. Neuroscientists have independently proposed ideas similar to the cognitive cycle, the fundamental hypothesis of the LIDA model of cognition. High-level cognition, such as deliberation, planning, etc., is typically enabled by multiple cognitive cycles. In this paper we describe a timing model LIDA's cognitive cycle. Based on empirical and simulation data we propose that an initial phase of perception (stimulus recognition) occurs 80-100 ms from stimulus onset under optimal conditions. It is followed by a conscious episode (broadcast) 200-280 ms after stimulus onset, and an action selection phase 60-110 ms from the start of the conscious phase. One cognitive cycle would therefore take 260-390 ms. The LIDA timing model is consistent with brain evidence indicating a fundamental role for a theta-gamma wave, spreading forward from sensory cortices to rostral corticothalamic regions. This posteriofrontal theta-gamma wave may be experienced as a conscious perceptual event starting at 200-280 ms post stimulus. The action selection component of the cycle is proposed to involve frontal, striatal and cerebellar regions. Thus the cycle is inherently recurrent, as the anatomy of the thalamocortical system suggests. The LIDA model fits a large body of cognitive and neuroscientific evidence. Finally, we describe two LIDA-based software agents: the LIDA Reaction Time agent that simulates human performance in a simple reaction time task, and the LIDA Allport agent which models phenomenal simultaneity within timeframes comparable to human subjects. While there are many models of reaction time performance, these results fall naturally out of a biologically and computationally plausible cognitive architecture. © 2011 Madl et al.

Delgado J.Y.,The Neurosciences Institute | Delgado J.Y.,University of Bordeaux Segalen | Owens G.C.,The Neurosciences Institute
Frontiers in Molecular Neuroscience | Year: 2012

The proximal enhancer of the cytochrome c gene (Cycs) contains binding sites for both cAMP response element binding proteins (CREB) and Nuclear Respiratory Factor 1 (NRF1). To investigate how neuronal activity regulates this enhancer region, a lentivirus was constructed in which a short-lived green fluorescent protein (GFP) was placed under the transcriptional control of the Cycs proximal enhancer linked to a synthetic core promoter. Primary hippocampal neurons were infected, and the synaptic strengths of individual neurons were measured by whole-cell patch clamping. On average the amplitude of miniature postsynaptic currents (mEPSCs) was higher in brighter GFP+ neurons, while the frequency of mEPSCs was not significantly different. Inhibiting neural activity by applying a GABAA receptor agonist increased GFP expression in most neurons, which persisted after homeostatic synaptic scaling as evidenced by a decrease in the amplitude and frequency of mEPSCs. Removing the CREB binding sites revealed that calcium influx through L-type channels and NMDA receptors, and ERK1/2 activation played a role in NRF1-mediated transcription. CREB and NRF1, therefore, combine to regulate transcription of Cycs in response to changing neural activity. © 2012 Delgado and Owens.

Watt A.J.,University College London | Desai N.S.,The Neurosciences Institute
Frontiers in Synaptic Neuroscience | Year: 2010

Spike-timing-dependent plasticity (STDP) offers a powerful means of forming and modifying neural circuits. Experimental and theoretical studies have demonstrated its potential usefulness for functions as varied as cortical map development, sharpening of sensory receptive fields, working memory, and associative learning. Even so, it is unlikely that STDP works alone. Unless changes in synaptic strength are coordinated across multiple synapses and with other neuronal properties, it is difficult to maintain the stability and functionality of neural circuits. Moreover, there are certain features of early postnatal development (e.g., rapid changes in sensory input) that threaten neural circuit stability in ways that STDP may not be well placed to counter. These considerations have led researchers to investigate additional types of plasticity, complementary to STDP, that may serve to constrain synaptic weights and/or neuronal firing. These are collectively known as "homeostatic plasticity" and include schemes that control the total synaptic strength of a neuron, that modulate its intrinsic excitability as a function of average activity, or that make the ability of synapses to undergo Hebbian modification depend upon their history of use. In this article, we will review the experimental evidence for homeostatic forms of plasticity and consider how they might interact with STDP during development, and learning and memory. © 2010 Watt and Desai.

Chen S.,The Neurosciences Institute | Owens G.C.,The Neurosciences Institute | Makarenkova H.,The Neurosciences Institute | Edelman D.B.,The Neurosciences Institute
PLoS ONE | Year: 2010

Background: Tubulin is a major substrate of the cytoplasmic class II histone deacetylase HDAC6. Inhibition of HDAC6 results in higher levels of acetylated tubulin and enhanced binding of the motor protein kinesin-1 to tubulin, which promotes transport of cargoes along microtubules. Microtubule-dependent intracellular trafficking may therefore be regulated by modulating the activity of HDAC6. We have shown previously that the neuromodulator serotonin increases mitochondrial movement in hippocampal neurons via the Akt-GSK3β signaling pathway. Here, we demonstrate a role for HDAC6 in this signaling pathway. Methodology/Principal Findings: We found that the presence of tubacin, a specific HDAC6 inhibitor, dramatically enhanced mitochondrial movement in hippocampal neurons, whereas niltubacin, an inactive tubacin analog, had no effect. Compared to control cultures, higher levels of acetylated tubulin were found in neurons treated with tubacin, and more kinesin-1 was associated with mitochondria isolated from these neurons. Inhibition of GSK3β decreased cytoplasmic deacetylase activity and increased tubulin acetylation, whereas blockade of Akt, which phosphorylates and down-regulates GSK3β, increased cytoplasmic deacetylase activity and decreased tubulin acetylation. Concordantly, the administration of 5-HT, 8-OH-DPAT (a specific 5-HT1A receptor agonist), or fluoxetine (a 5-HT reuptake inhibitor) increased tubulin acetylation. GSK3β was found to co-localize with HDAC6 in hippocampal neurons, and inhibition of GSK3β resulted in decreased binding of antibody to phosphoserine-22, a potential GSK3β phosphorylation site in HDAC6. GSK3β may therefore regulate HDAC6 activity by phosphorylation. Conclusions/Significance: This study demonstrates that HDAC6 plays an important role in the modulation of mitochondrial transport. The link between HDAC6 and GSK3β, established here, has important implications for our understanding of neurodegenerative disorders. In particular, abnormal mitochondrial transport, which has been observed in such disorders as Alzheimer's disease and Parkinson's disease, could result from the misregulation of HDAC6 by GSK3β. HDAC6 may therefore constitute an attractive target in the treatment of these disorders. © 2010 Chen et al.

Szatmary B.,The Neurosciences Institute | Szatmary B.,Brain Corporation | Izhikevich E.M.,The Neurosciences Institute | Izhikevich E.M.,Brain Corporation
PLoS Computational Biology | Year: 2010

Working memory (WM) is the part of the brain's memory system that provides temporary storage and manipulation of information necessary for cognition. Although WM has limited capacity at any given time, it has vast memory content in the sense that it acts on the brain's nearly infinite repertoire of lifetime long-term memories. Using simulations, we show that large memory content and WM functionality emerge spontaneously if we take the spike-timing nature of neuronal processing into account. Here, memories are represented by extensively overlapping groups of neurons that exhibit stereotypical time-locked spatiotemporal spike-timing patterns, called polychronous patterns; and synapses forming such polychronous neuronal groups (PNGs) are subject to associative synaptic plasticity in the form of both long-term and shortterm spike-timing dependent plasticity. While long-term potentiation is essential in PNG formation, we show how shortterm plasticity can temporarily strengthen the synapses of selected PNGs and lead to an increase in the spontaneous reactivation rate of these PNGs. This increased reactivation rate, consistent with in vivo recordings during WM tasks, results in high interspike interval variability and irregular, yet systematically changing, elevated firing rate profiles within the neurons of the selected PNGs. Additionally, our theory explains the relationship between such slowly changing firing rates and precisely timed spikes, and it reveals a novel relationship between WM and the perception of time on the order of seconds. © 2010 Szatmáry, Izhikevich.

Patel A.D.,The Neurosciences Institute
Annals of the New York Academy of Sciences | Year: 2012

Recent research suggests that musical training enhances the neural encoding of speech. Why would musical training have this effect? The OPERA hypothesis proposes an answer on the basis of the idea that musical training demands greater precision in certain aspects of auditory processing than does ordinary speech perception. This paper presents two assumptions underlying this idea, as well as two clarifications, and suggests directions for future research. © 2012 New York Academy of Sciences..

McKinstry J.L.,The Neurosciences Institute | Edelman G.M.,The Neurosciences Institute
Frontiers in Neurorobotics | Year: 2013

Animal behavior often involves a temporally ordered sequence of actions learned from experience. Here we describe simulations of interconnected networks of spiking neurons that learn to generate patterns of activity in correct temporal order. The simulation consists of large-scale networks of thousands of excitatory and inhibitory neurons that exhibit short-term synaptic plasticity and spike-timing dependent synaptic plasticity. The neural architecture within each area is arranged to evoke winner-take-all (WTA) patterns of neural activity that persist for tens of milliseconds. In order to generate and switch between consecutive firing patterns in correct temporal order, a reentrant exchange of signals between these areas was necessary. To demonstrate the capacity of this arrangement, we used the simulation to train a brain-based device responding to visual input by autonomously generating temporal sequences of motor actions. © 2013 McKinstry and Edelman.

Miconi T.,University Paul Sabatier | Miconi T.,The Neurosciences Institute | VanRullen R.,University Paul Sabatier
PLoS Computational Biology | Year: 2016

Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space. Several existing models of attention suggest that these effects arise from selective modulation of neural inputs. However, anatomical and physiological observations suggest that attentional modulation targets higher levels of the visual system (such as V4 or MT) rather than input areas (such as V1). Here we propose a simple mechanism that explains how a top-down attentional modulation, falling on higher visual areas, can produce the observed effects of attention on neural responses. Our model requires only the existence of modulatory feedback connections between areas, and short-range lateral inhibition within each area. Feedback connections redistribute the top-down modulation to lower areas, which in turn alters the inputs of other higher-area cells, including those that did not receive the initial modulation. This produces firing rate modulations and receptive field shifts. Simultaneously, short-range lateral inhibition between neighboring cells produce competitive effects that are automatically scaled to receptive field size in any given area. Our model reproduces the observed attentional effects on response rates (response gain, input gain, biased competition automatically scaled to receptive field size) and receptive field structure (shifts and resizing of receptive fields both spatially and in complex feature space), without modifying model parameters. Our model also makes the novel prediction that attentional effects on response curves should shift from response gain to contrast gain as the spatial focus of attention drifts away from the studied cell. © 2016 Miconi, VanRullen.

Owens G.C.,The Neurosciences Institute | Walcott E.C.,The Neurosciences Institute
PLoS ONE | Year: 2012

The relative roles played by trafficking, fission and fusion in the dynamics of mitochondria in neurons have not been fully elucidated. In the present study, a slow widespread redistribution of mitochondria within cultured spinal cord motor neurons was observed as a result of extensive organelle fusion. Mitochondria were labeled with a photoconvertible fluorescent protein (mitoKaede) that is red-shifted following brief irradiation with blue light. The behavior of these selectively labeled mitochondria was followed by live fluorescence imaging. Marking mitochondria within the cell soma revealed a complete mixing, within 18 hours, of these organelles with mitochondria coming from the surrounding neurites. Fusion of juxtaposed mitochondria was directly observed in neuritic processes at least 200 microns from the cell body. Within 24 hours, photoconverted mitoKaede was dispersed to all of the mitochondria in the portion of neurite under observation. When time lapse imaging over minutes was combined with long-term observation of marked mitochondria, moving organelles that traversed the field of view did not initially contain photoconverted protein, but after several hours organelles in motion contained both fluorescent proteins, coincident with widespread fusion of all of the mitochondria within the length of neurite under observation. These observations suggest that there is a widespread exchange of mitochondrial components throughout a neuron as a result of organelle fusion. © 2012 Owens, Walcott.

Loading The Neurosciences Institute collaborators
Loading The Neurosciences Institute collaborators