Time filter

Source Type

He S.,Tsinghua University | Sun Y.,Tsinghua University | Yang Q.,Tsinghua University | Zhang X.,Tsinghua University | And 10 more authors.
PLoS Genetics | Year: 2017

Imprinted genes display biased expression of paternal and maternal alleles and are only found in mammals and flowering plants. Compared to several hundred imprinted genes that are functionally characterized in mammals, very few imprinted genes were confirmed in plants and even fewer of them have been functionally investigated. Here, we report a new imprinted gene, NUWA, in plants. NUWA is an essential gene, because loss of its function resulted in reduced transmission through the female gametophyte and defective cell/nuclear proliferation in early Arabidopsis embryo and endosperm. NUWA is a maternally expressed imprinted gene, as only the maternal allele of NUWA is transcribed and translated from gametogenesis to the 16-cell globular embryo stage after fertilization, and the de novo transcription of the maternal allele of NUWA starts from the zygote stage. Different from other identified plant imprinted genes whose encoded proteins are mostly localized to the nucleus, the NUWA protein was localized to the mitochondria and was essential for mitochondria function. Our work uncovers a novel imprinted gene of a previously unidentified type, namely, a maternal-specific expressed nuclear gene with its encoded protein localizing to and controlling the function of the maternally inherited mitochondria. This reveals a unique mechanism of maternal control of the mitochondria and adds an extra layer of complexity to the regulation of nucleus-organelle coordination during early plant development. © 2017 He et al.


Wu R.,Peking University | Li S.,Peking University | He S.,Peking University | Wassmann F.,University of Bonn | And 7 more authors.
Plant Cell | Year: 2011

Plants have a chemically heterogeneous lipophilic layer, the cuticle, which protects them from biotic and abiotic stresses. The mechanisms that regulate cuticle development are poorly understood. We identified a rice (Oryza sativa) dominant curly leaf mutant, curly flag leaf1 (cfl1), and cloned CFL1, which encodes a WW domain protein. We overexpressed both rice and Arabidopsis CFL1 in Arabidopsis thaliana; these transgenic plants showed severely impaired cuticle development, similar to that in cfl1 rice. Reduced expression of At CFL1 resulted in reinforcement of cuticle structure. At CFL1 was predominantly expressed in specialized epidermal cells and in regions where dehiscence and abscission occur. Biochemical evidence showed that At CFL1 interacts with HDG1, a class IV homeodomain-leucine zipper transcription factor. Suppression of HDG1 function resulted in similar defective cuticle phenotypes in wild-type Arabidopsis but much alleviated phenotypes in At cfl1-1 mutants. The expression of two cuticle development-associated genes, BDG and FDH, was downregulated in At CFL1 overexpressor and HDG1 suppression plants. HDG1 binds to the cis-element L1 box, which exists in the regulatory regions of BDG and FDH. Our results suggest that rice and Arabidopsis CFL1 negatively regulate cuticle development by affecting the function of HDG1, which regulates the downstream genes BDG and FDH. © 2011 American Society of Plant Biologists. All rights reserved.


Chen Y.,China Agricultural University | Chen Z.,China Agricultural University | Chen Z.,Peking University | Kang J.,Peking University | And 4 more authors.
Plant Molecular Biology Reporter | Year: 2013

Low temperature affects plant growth and crop productivity. The CBF genes are a class of transcription factors that play important roles in cold response. Here we report that AtMYB14 participates in freezing tolerance in Arabidopsis by affecting expression of CBF genes. The AtMYB14 gene was down-regulated by cold treatment. AtMYB14 encodes a nuclear protein that functions as an R2R3-MYB transcription activator. Knock-down of AtMYB14 by artificial microRNA increased the tolerance to freezing stress. Both the CBF genes and the downstream genes were induced to a much higher level in AtMYB14 knock-down plants than in wild type under cold treatment. Our results suggest that AtMYB14 plays an important role in the plant response to cold stress. © 2012 The Author(s).


Kang J.,Peking University | Zhang H.,Peking University | Sun T.,Peking University | Shi Y.,Peking University | And 7 more authors.
New Phytologist | Year: 2013

We used a monophyletic group of four natural populations of Arabidopsis thaliana expanded from a single ancestor along the Yangtze River c. 90 000 yr ago to study the molecular mechanism of the divergence in their freezing tolerance, in order to gain an insight into the genetic basis of their local adaption to low temperatures. Freezing tolerance assays, measurements of metabolites in the raffinose biosynthesis pathway and transactivation-activity assays of variation in forms of cold-responsive transcription factors were conducted on the four populations. Quantitative trait locus mapping was adopted with F2 populations of the most- and least freezing-tolerant populations. The degree of freezing tolerance among the four populations was negatively correlated with the lowest monthly average temperature of January in their native habitats, and positively correlated to the expression level of some cold-regulated genes. We identified a major locus harboring three cold-responsive transcription factor genes CBF1-3, and found a nucleotide insertion in CBF2 in all populations except SXcgx, which generated a dysfunctional CBF2 protein. The CBF2 in SXcgx experienced a stronger natural selection in the cooler environment after CBF3 lost its response to low temperature, which possibly reflects a local adaptation of these populations during the expansion from a common ancestor. © 2013 The Authors © 2013 New Phytologist Trust.


Wang W.-Y.,Peking University | Zhang L.,Peking University | Xing S.,Peking University | Ma Z.,Peking University | And 6 more authors.
Journal of Genetics and Genomics | Year: 2012

VPS15 protein is a component of the phosphatidylinositol 3-kinase complex which plays a pivotal role in the development of yeast and mammalian cells. The knowledge about the function of its homologue in plants remains limited. Here we report that AtVPS15, a homologue of yeast VPS15p in Arabidopsis, plays an essential role in pollen germination. Homozygous T-DNA insertion mutants of AtVPS15 could not be obtained from the progenies of self-pollinated heterozygous mutants. Reciprocal crosses between atvps15 mutants and wild-type Arabidopsis revealed that the T-DNA insertion was not able to be transmitted by male gametophytes. DAPI staining, Alexander's stain and scanning electron microscopic analysis showed that atvps15 heterozygous plants produced pollen grains that were morphologically indistinguishable from wild-type pollen, whereas in vitro germination experiments revealed that germination of the pollen grains was defective. GUS staining analysis of transgenic plants expressing the GUS reporter gene driven by the AtVPS15 promoter showed that AtVPS15 was mainly expressed in pollen grains. Finally, DUALmembrane yeast two-hybrid analysis demonstrated that AtVPS15 might interact directly with AtVPS34. These results suggest that AtVPS15 is very important for pollen germination, possibly through modulation of the activity of PI3-kinase. © 2012.


Luo Y.,Peking University | Qin G.,Peking University | Zhang J.,Peking University | Liang Y.,Peking University | And 9 more authors.
Plant Cell | Year: 2011

In animal cells, myo-inositol is an important regulatory molecule in several physiological and biochemical processes, including signal transduction and membrane biogenesis. However, the fundamental biological functions of myo-inositol are still far from clear in plants. Here, we report the genetic characterization of three Arabidopsis thaliana genes encoding D-myo-inositol-3-phosphate synthase (MIPS), which catalyzes the rate-limiting step in de novo synthesis of myo-inositol. Each of the three MIPS genes rescued the yeast ino1 mutant, which is defective in yeast MIPS gene INO1, and they had different dynamic expression patterns during Arabidopsis embryo development. Although single mips mutants showed no obvious phenotypes, the mips1 mips2 double mutant and the mips1 mips2 mips3 triple mutant were embryo lethal, whereas the mips1 mips3 and mips1 mips2+/2 double mutants had abnormal embryos. The mips phenotypes resembled those of auxin mutants. Indeed, the double and triple mips mutants displayed abnormal expression patterns of DR5:green fluorescent protein, an auxin-responsive fusion protein, and they had altered PIN1 subcellular localization. Also, membrane trafficking was affected in mips1 mips3. Interestingly, overexpression of PHOSPHATIDYLINOSITOL SYNTHASE2, which converts myo-inositol to membrane phosphatidylinositol (PtdIns), largely rescued the cotyledon and endomembrane defects in mips1 mips3. We conclude that myo-inositol serves as the main substrate for synthesizing PtdIns and phosphatidylinositides, which are essential for endomembrane structure and trafficking and thus for auxin-regulated embryogenesis. © 2011 American Society of Plant Biologists.


Zhang Y.,Peking University | Wu R.,Peking University | Qin G.,Peking University | Chen Z.,Peking University | And 5 more authors.
Journal of Integrative Plant Biology | Year: 2011

In plants, the meristem has to maintain a separate population of pluripotent cells that serve two main tasks, i.e., self-maintenance and organ initiation, which are separated spatially in meristem. Prior to our study, WUS and WUS-like WOX genes had been reported as essential for the development of the SAM. In this study, the consequences of gain of WOX1 function are described. Here we report the identification of an Arabidopsis gain-of-function mutant wox1-D, in which the expression level of the WOX1 (WUSCHEL HOMEOBOX 1) was elevated and subtle defects in meristem development were observed. The wox1-D mutant phenotype is dwarfed and slightly bushy, with a smaller shoot apex. The wox1-D mutant also produced small and dark green leaves, and exhibited a failure in anther dehiscence and male sterility. Molecular evidences showed that the transcription of the stem cell marker gene CLV3 was down-regulated in the meristem of wox1-D but accumulated in the other regions, i.e., in the root-hypocotyl junction and at the sites for lateral root initiation. The fact that the organ size and cell size in leaves of wox1-D are smaller than those in wild type suggests that cell expansion is possibly affected in order to have partially retarded the development of lateral organs, possibly through alteration of CLV3 expression pattern in the meristem. An S-adenosylmethionine decarboxylase (SAMDC) protein, SAMDC1, was found able to interact with WOX1 by yeast two-hybrid and pull-down assays in vitro. HPLC analysis revealed a significant reduction of polyamine content in wox1-D. Our results suggest that WOX1 plays an important role in meristem development in Arabidopsis, possibly via regulation of SAMDC activity and polyamine homeostasis, and/or by regulating CLV3 expression. © 2011 Institute of Botany, Chinese Academy of Sciences.


Zhao Y.,China Agricultural University | Zhao Y.,Peking University | Wei T.,Peking University | Yin K.-Q.,Peking University | And 7 more authors.
New Phytologist | Year: 2012

• Ethylene plays a crucial role in plant resistance to necrotrophic pathogens, in which ETHYLENE RESPONSE FACTORs (ERFs) are often involved. • Here, we evaluated the role of an ERF transcription factor, RELATED TO AP2 2 (RAP2.2), in Botrytis resistance and ethylene responses in Arabidopsis. We analyzed the resistance of transgenic plants overexpressing RAP2.2 and the T-DNA insertion mutant to Botrytis cinerea. We assessed its role in the ethylene signaling pathway by molecular and genetic approaches. • RAP2.2-overexpressing transgenic plants showed increased resistance to B. cinerea, whereas its T-DNA insertion mutant rap2.2-3 showed decreased resistance. Overexpression of RAP2.2 in ethylene insensitive 2 (ein2) and ein3 ein3-like 1 (eil1) mutants restored their resistance to B. cinerea. Both ethylene and Botrytis infection induced the expression of RAP2.2 and the induction was disrupted in ein2 and ein3 eil1 mutants. We identified rap2.12-1 as a T-DNA insertion mutant of RAP2.12, the closest homolog of RAP2.2. The hypocotyls of rap2.2-3 rap2.12-1 double mutants showed ethylene insensitivity. The constitutive triple response in constitutive triple response1 (ctr1) was partially released in the rap2.2-3 rap2.12-1 ctr1 triple mutants. • Our findings demonstrate that RAP2.2 functions as an important regulator in Botrytis resistance and ethylene responses. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.


Han L.,China Agricultural University | Qin G.,Peking University | Kang D.,China Agricultural University | Chen Z.,China Agricultural University | And 5 more authors.
Journal of Genetics and Genomics | Year: 2010

Complex I (the NADH:ubiquinone oxidoreductase) of the mitochondrial respiratory chain is a complicated, multi-subunit, membrane-bound assembly and contains more than 40 different proteins in higher plants. In this paper, we characterize the Arabidopsis homologue (designated as AtCIB22) of the B22 subunit of eukaryotic mitochondrial Complex I. AtCIB22 is a single-copy gene and is highly conserved throughout eukaryotes. AtCIB22 protein is located in mitochondria and the AtCIB22 gene is widely expressed in different tissues. Mutant Arabidopsis plants with a disrupted AtCIB22 gene display pleiotropic phenotypes including shorter roots, smaller plants and delayed flowering. Stress analysis indicates that the AtCIB22 mutants' seed germination and early seedling growth are severely inhibited by sucrose deprivation stress but more tolerant to ethanol stress. Molecular analysis reveals that in moderate knockdown AtCIB22 mutants, genes including cell redox proteins and stress related proteins are significantly up-regulated, and that in severe knockdown AtCIB22 mutants, the alternative respiratory pathways including NDA1, NDB2, AOX1a and AtPUMP1 are remarkably elevated. These data demonstrate that AtCIB22 is essential for plant development and mitochondrial electron transport chains in Arabidopsis. Our findings also enhance our understanding about the physiological role of Complex I in plants. © 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China.


Yang Y.,Tsinghua University | Li L.,Tsinghua University | Qu L.-J.,Tsinghua University | Qu L.-J.,The National Plant Gene Research Center Beijing
Journal of Integrative Plant Biology | Year: 2016

The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted. © 2016 Institute of Botany, Chinese Academy of Sciences.

Loading The National Plant Gene Research Center Beijing collaborators
Loading The National Plant Gene Research Center Beijing collaborators