The Nathan Kline Institute for Psychiatric Research

New York City, NY, United States

The Nathan Kline Institute for Psychiatric Research

New York City, NY, United States
SEARCH FILTERS
Time filter
Source Type

Scharfman H.E.,The Nathan Kline Institute for Psychiatric Research | Scharfman H.E.,New York University | Bernstein H.L.,The Nathan Kline Institute for Psychiatric Research | Bernstein H.L.,New York University
Frontiers in Systems Neuroscience | Year: 2015

The dentate gyrus (DG) is important to many aspects of hippocampal function, but there are many aspects of the DG that are incompletely understood. One example is the role of mossy cells (MCs), a major DG cell type that is glutamatergic and innervates the primary output cells of the DG, the granule cells (GCs). MCs innervate the GCs as well as local circuit neurons that make GABAergic synapses on GCs, so the net effect of MCs on GCs-and therefore the output of the DG-is unclear. Here we first review fundamental information about MCs and the current hypotheses for their role in the normal DG and in diseases that involve the DG. Then we review previously published data which suggest that MCs are a source of input to a subset of GCs that are born in adulthood (adult-born GCs). In addition, we discuss the evidence that adult-born GCs may support the normal inhibitory ‘gate’ functions of the DG, where the GCs are a filter or gate for information from the entorhinal cortical input to area CA3. The implications are then discussed in the context of seizures and temporal lobe epilepsy (TLE). In TLE, it has been suggested that the DG inhibitory gate is weak or broken and MC loss leads to insufficient activation of inhibitory neurons, causing hyperexcitability. That idea was called the “dormant basket cell hypothesis.” Recent data suggest that loss of normal adult-born GCs may also cause disinhibition, and seizure susceptibility. Therefore, we propose a reconsideration of the dormant basket cell hypothesis with an intervening adult-born GC between the MC and basket cell and call this hypothesis the “dormant immature granule cell hypothesis.” © 2015 Scharfman and Bernstein.


Myers C.E.,Rutgers University | Myers C.E.,Neurobehavioral Research Laboratory | Scharfman H.E.,New York University | Scharfman H.E.,The Nathan Kline Institute for Psychiatric Research
Hippocampus | Year: 2011

Many theories of hippocampal function assume that area CA3 of hippocampus is capable of performing rapid pattern storage, as well as pattern completion when a partial version of a familiar pattern is presented, and that the dentate gyrus (DG) is a preprocessor that performs pattern separation, facilitating storage and recall in CA3. The latter assumption derives partly from the anatomical and physiological properties of DG. However, the major output of DG is from a large number of DG granule cells to a smaller number of CA3 pyramidal cells, which potentially negates the pattern separation performed in the DG. Here, we consider a simple CA3 network model, and consider how it might interact with a previously developed computational model of the DG. The resulting "standard" DG-CA3 model performs pattern storage and completion well, given a small set of sparse, randomly derived patterns representing entorhinal input to the DG and CA3. However, under many circumstances, the pattern separation achieved in the DG is not as robust in CA3, resulting in a low storage capacity for CA3, compared to previous mathematical estimates of the storage capacity for an autoassociative network of this size. We also examine an often-overlooked aspect of hippocampal anatomy that might increase functionality in the combined DG-CA3 model. Specifically, axon collaterals of CA3 pyramidal cells project "back" to the DG ("backprojections"), exerting inhibitory effects on granule cells that could potentially ensure that different subpopulations of granule cells are recruited to respond to similar patterns. In the model, addition of such backprojections improves both pattern separation and storage capacity. We also show that the DG-CA3 model with backprojections provides a better fit to empirical data than a model without backprojections. Therefore, we hypothesize that CA3 backprojections might play an important role in hippocampal function. © 2010 Wiley Periodicals, Inc.


Harte-Hargrove L.C.,The Nathan Kline Institute for Psychiatric Research | Harte-Hargrove L.C.,New York University | MacLusky N.J.,University of Guelph | Scharfman H.E.,The Nathan Kline Institute for Psychiatric Research | Scharfman H.E.,New York University
Neuroscience | Year: 2013

The neurotrophin brain-derived neurotrophic factor (BDNF) and the steroid hormone estrogen exhibit potent effects on hippocampal neurons during development and in adulthood. BDNF and estrogen have also been implicated in the etiology of diverse types of neurological disorders or psychiatric illnesses, or have been discussed as potentially important in treatment. Although both are typically studied independently, it has been suggested that BDNF mediates several of the effects of estrogen in the hippocampus, and that these interactions play a role in the normal brain as well as disease. Here we focus on the mossy fiber (MF) pathway of the hippocampus, a critical pathway in normal hippocampal function, and a prime example of a location where numerous studies support an interaction between BDNF and estrogen in the rodent brain. We first review the temporal and spatially regulated expression of BDNF and estrogen in the MFs, as well as their receptors. Then we consider the results of studies that suggest that 17β-estradiol alters hippocampal function by its influence on BDNF expression in the MF pathway. We also address the hypothesis that estrogen influences the hippocampus by mechanisms related not only to the mature form of BDNF, acting at trkB receptors, but also by regulating the precursor, proBDNF, acting at p75NTR. We suggest that the interactions between BDNF and 17β-estradiol in the MFs are potentially important in the normal function of the hippocampus, and have implications for sex differences in functions that depend on the MFs and in diseases where MF plasticity has been suggested to play an important role, Alzheimer's disease, epilepsy and addiction. © 2012 IBRO.


Scharfman H.E.,New York University | Scharfman H.E.,The Nathan Kline Institute for Psychiatric Research | Myers C.E.,Veterans Affairs Medical Center | Myers C.E.,Rutgers University
Frontiers in Neural Circuits | Year: 2013

The circuitry of the dentate gyrus (DG) of the hippocampus is unique compared to other hippocampal subfields because there are two glutamatergic principal cells instead of one: granule cells, which are the vast majority of the cells in the DG, and the so-called "mossy cells." The distinctive appearance of mossy cells, the extensive divergence of their axons, and their vulnerability to excitotoxicity relative to granule cells has led to a great deal of interest in mossy cells. Nevertheless, there is no consensus about the normal functions of mossy cells and the implications of their vulnerability. There even seems to be some ambiguity about exactly what mossy cells are. Here we review initial studies of mossy cells, characteristics that define them, and suggest a practical definition to allow investigators to distinguish mossy cells from other hilar neurons even if all morphological and physiological information is unavailable due to technical limitations of their experiments. In addition, hypotheses are discussed about the role of mossy cells in the DG network, reasons for their vulnerability and their implications for disease. © 2013 Scharfman and Myers.


Wang L.,New York University | Chen I.,New York University | Lin D.,New York University | Lin D.,The Nathan Kline Institute for Psychiatric Research
Neuron | Year: 2015

The ventromedial hypothalamus (VMH) was thought to be essential for coping with threat, although its circuit mechanism remains unclear. To investigate this, we optogenetically activated steroidogenic factor 1 (SF1)-expressing neurons in the dorsomedialand central parts of the VMH (VMHdm/c), and observed a range of context-dependent somatomotor and autonomic responses resembling animals' natural defensive behaviors. By activating independent pathways emanating from the VMHdm/c, we demonstrated that VMHdm/c projection to the dorsolateral periaqueductal gray (dlPAG) induces inflexible immobility, while the VMHdm/c to anterior hypothalamic nucleus (AHN) pathway promotes avoidance. Consistent with the behavior changes induced by VMH toAHN pathway activation, direct activation of the AHN elicited avoidance and escape jumping, but not immobility. Retrograde tracing studies revealed that nearly 50% of PAG-projecting VMHdm/c neurons send collateral projection to the AHN and vice versa. Thus, VMHdm/c neurons employ a one-to-many wiring configuration to orchestrate multiple aspects of defensive behaviors. © 2015 Elsevier Inc.


Scharfman H.E.,New York University | Scharfman H.E.,The Nathan Kline Institute for Psychiatric Research | Chao M.V.,New York University
Cognitive Neuroscience | Year: 2013

A major problem in the field of neurodegeneration is the basis of selective vulnerability of subsets of neurons to disease. In aging, Alzheimer's disease (AD), and other disorders such as temporal lobe epilepsy, the superficial layers of the entorhinal cortex (EC) are an area of selective vulnerability. In AD, it has been suggested that the degeneration of these neurons may play a role in causing the disease because it occurs at an early stage. Therefore, it is important to define the distinctive characteristics of the EC that make this region particularly vulnerable. It has been shown that neurotrophins such as brain-derived neurotrophic factor (BDNF) are critical to the maintenance of the cortical neurons in the adult brain, and specifically the EC. Here we review the circuitry, distinctive functions, and neurotrophin-dependence of the EC that are relevant to its vulnerability. We also suggest that a protein that is critical to the actions of BDNF, the ARMS/Kidins220 scaffold protein, plays an important role in neurotrophic support of the EC. © 2013 Taylor & Francis.


Scharfman H.E.,New York University | Scharfman H.E.,The Nathan Kline Institute for Psychiatric Research | Myers C.E.,Veterans Affairs Medical Center New Jersey Healthcare System | Myers C.E.,Rutgers University
Frontiers in Neural Circuits | Year: 2012

The circuitry of the dentate gyrus of the hippocampus is unique compared to other hippocampal subfields because there are two glutamatergic principal cells instead of one: granule cells, which are the vast majority of the cells in the dentate gyrus, and the so-called 'mossy cells.' The distinctive appearance of mossy cells, the extensive divergence of their axons, and their vulnerability to excitotoxicity relative to granule cells has led to a great deal of interest in mossy cells. Nevertheless, there is no consensus about the normal functions of mossy cells and the implications of their vulnerability. There even seems to be some ambiguity about exactly what mossy cells are. Here we review initial studies of mossy cells, characteristics that define them, and suggest a practical definition to allow investigators to distinguish mossy cells from other hilar neurons even if all morphological and physiological information is unavailable due to technical limitations of their experiments. In addition, hypotheses are discussed about the role of mossy cells in the dentate gyrus network, reasons for their vulnerability and their implications for disease.


Bickel S.,The Nathan Kline Institute for Psychiatric Research | Dias E.C.,The Nathan Kline Institute for Psychiatric Research | Epstein M.L.,The Nathan Kline Institute for Psychiatric Research | Javitt D.C.,The Nathan Kline Institute for Psychiatric Research
NeuroImage | Year: 2012

Analysis of neural oscillations in the electroencephalogram (EEG) during cognitive tasks provides valuable information about underlying neuronal processing not accessible by other methods such as event-related potentials (ERPs) and the BOLD signal in fMRI. We investigated neural substrates of motor preparation and expectancy by analyzing neural oscillations of healthy subjects performing the AX continuous performance task (AX-CPT), a task widely used to evaluate processes such as cognitive control, motor preparation and anticipatory and sustained attention. The task consists of letters presented sequentially on a monitor, and subjects are required to respond only when they see the letter A (cue) followed by the letter X (target). In this study, to emphasize expectation and motor preparation, three versions of AX-CPT were used in which the overall propensity to respond was differentially modulated, by changing the probability of the letter sequences. Neural activity was investigated in three time windows following presentation of the cue: sensory, evaluation and preparation. Alpha power was reduced following cue onset similarly in all versions of the task in both the sensory and evaluation periods, but in the later preparation period there were task dependent modulations. Alpha was decreased when an infrequent cue increased the chance of a response, and increased when a propensity to respond had to be overcome, possibly reflecting an anticipatory attentional mechanism to gate visuo-motor processing. Beta power was modulated by task and cue in both evaluation and preparation periods. In the latter, beta power reflected the propensity to respond and correlated both with amplitude of the contingent negative variation (CNV), an ERP that reflects response preparation, and with reaction time. Some clinical populations such as patients with schizophrenia or attention-deficit disorder show specific deficits when performing the AX-CPT. These results provide a basis for investigating the differential neural underpinnings of oscillatory cognitive control deficits observed in various patient populations. © 2012 Elsevier Inc.


Chin J.,Thomas Jefferson University | Scharfman H.E.,New York University | Scharfman H.E.,The Nathan Kline Institute for Psychiatric Research
Epilepsy and Behavior | Year: 2013

Seizures in patients with Alzheimer's disease (AD) have been examined by many investigators over the last several decades, and there are diverse opinions about their potential relevance to AD pathophysiology. Some studies suggest that seizures appear to be a fairly uncommon co-morbidity, whereas other studies report a higher incidence of seizures in patients with AD. It was previously thought that seizures play a minor role in AD pathophysiology because of their low frequency, and also because they may only be noticed during late stages of AD, suggesting that seizures are likely to be a consequence of neurodegeneration rather than a contributing factor. However, clinical reports indicate that seizures can occur early in the emergence of AD symptoms, particularly in familial AD. In this case, seizures may be an integral part of the emerging pathophysiology. This view has been supported by evidence of recurrent spontaneous seizures in transgenic mouse models of AD in which familial AD is simulated. Additional data from transgenic animals suggest that there may be a much closer relationship between seizures and AD than previously considered. There is also evidence that seizures facilitate production of amyloid β (Aβ) and can cause impairments in cognition and behavior in both animals and humans. However, whether seizures play a role in the early stages of AD pathogenesis is still debated. Therefore, it is timely to review the similarities and differences between AD and epilepsy, as well as data suggesting that seizures may contribute to cognitive and behavioral dysfunction in AD. Here we focus on AD and temporal lobe epilepsy (TLE), a particular type of epilepsy that involves the temporal lobe, a region that influences behavior and is critical to memory. We also consider potential neurobiological mechanisms that support the view that the causes of seizures in TLE may be related to the causes of cognitive dysfunction in AD. We suggest that similar underlying mechanisms may exist for at least some of the aspects of AD that are also found in TLE.This article is part of a Special Issue entitled "The Future of Translational Epilepsy Research". © 2012 Elsevier Inc.


Scharfman H.E.,The Nathan Kline Institute for Psychiatric Research | Scharfman H.E.,New York University
Epilepsy Currents | Year: 2012

There is a substantial body of evidence that spontaneous recurrent seizures occur in a subset of patients with Alzheimer disease (AD), especially the familial forms that have an early onset. In transgenic mice that simulate these genetic forms of AD, seizures or reduced seizure threshold have also been reported. Mechanisms underlying the seizures or reduced seizure threshold in these mice are not yet clear and are likely to be complex, because the synthesis of amyloid β (Aβ) involves many peptides and proteases that influence excitability. Based on transgenic mouse models of AD where Aβ and its precursor are elevated, it has been suggested thatseizures are caused by the downregulation of the Nav1.1 sodium channel in a subset of GABAergic interneurons, leading to a reduction in GABAergic inhibition. Anothermechanism of hyperexcitability appears to involve tau, because deletion of tau reduces seizures in some of the same transgenic mouse models of AD. Therefore, altered excitability may be as much a characteristic of AD as plaques and tangles-especially for the familial forms of AD. © American Epilepsy Society.

Loading The Nathan Kline Institute for Psychiatric Research collaborators
Loading The Nathan Kline Institute for Psychiatric Research collaborators