Time filter

Source Type

Rancho Mirage, CA, United States

Wu A.Y.,The Morrow Institute | Morrow D.M.,The Morrow Institute
Journal of Translational Medicine | Year: 2013

Background: In an attempt to engineer a regulatory compliant form of cell assisted lipotransfer in the U.S., the authors developed Autologous Fat Transfer with In-situ Mediation (AIM) for reconstruction of a refractory surgical scar.Methods: This method incorporates use of accepted standard procedures like autologous fat grafting and intradermal injection of NB6 collagenase to release adipose stem cells from a naturally occurring high concentration stromal vascular fraction (SVF) fat graft. To prevent off-target effects of collagenase, a hyaluronic acid and serum deactivation barrier is placed circumferentially around the operative site.Findings: This novel protocol was well tolerated by the patient and improved scar appearance, mobility and texture. Deepest scar contour defect correction was 80% and 77% at 4 and 12 weeks respectively.Conclusion: AIM appears to be a practical and viable option for scar reconstruction requiring small to moderate volume correction. © 2013 Wu and Morrow; licensee BioMed Central Ltd.

Wu A.Y.,The Morrow Institute | Morrow D.M.,The Morrow Institute
Journal of Translational Medicine | Year: 2012

Background: Microelectrode dieletrophoresis capture of live cells has been explored in animal and cellular models ex-vivo. Currently, there is no clinical data available regarding the safety and efficacy of dielectrophoresis (DEP) buffers and microcurrent manipulation in humans, despite copious pre-clinical studies suggesting its safety. The purpose of this study was to determine if DEP isolation of SVF using minimal manipulation methods is safe and efficacious for use in humans using the hand lipotransfer model.Methods: Autologous stromal vascular fraction cells (SVF) were obtained from lipoaspirate by collagenase digestion and centrifugation. The final mixture of live and dead cells was further processed using a custom DEP microelectrode array and microcurrent generator to isolate only live nucleated cells. Lipotransfer was completed using fat graft enhanced with either standard processed SVF (control) versus DEP filtered SVF (experimental). Spectral photography, ultrasound and biometric measurements were obtained at post operatively days 1, 4, 7, 14, 30, 60 and 90.Results: The DEP filter was capable of increasing SVF viability counts from 74.3 ± 2.0% to 94.7 ± 2.1%. Surrogate markers of inflammation (temperature, soft tissue swelling, pain and diminished range of motion) were more profound on the control hand. Clinical improvement in hand appearance was appreciated in both hands, though the control hand exclusively sustained late phase erosive skin breaks on post operative day 7. No skin breaks were appreciated on the DEP-SVF treated hand. Early fat engraftment failure was noted on the control hand thenar web space at 3 months post surgery.Discussion: No immediate hypersensitivity or adverse reaction was appreciated with the DEP-SVF treated hand. In fact, the control hand experienced skin disruption and mild superficial cellulitis, whereas the experimental hand did not experience this complication, suggesting a possible " protective" effect with DEP filtered SVF. Late ultrasound survey revealed larger and more frequent formation of oil cysts in the control hand, also suggesting greater risk of engraftment failure with standard lipotransfer.Conclusion: Clinical DEP appears safe and efficacious for human use. The DEP microelectrode array was found to be versatile and robust in efficiently isolating live SVF cells from dead cells and cellular debris in a time sensitive clinical setting. © 2012 Wu and Morrow; licensee BioMed Central Ltd.

Discover hidden collaborations