Cincinnati, OH, United States
Cincinnati, OH, United States

Time filter

Source Type

Weaver P.C.,The McConnell Group | Lazorchak J.M.,U.S. Environmental Protection Agency | Struewing K.A.,The McConnell Group | Struewing K.A.,Arcadis | And 4 more authors.
Chemosphere | Year: 2015

Development of methods for assessing exposure and effects of waterborne toxicants on stream invertebrate species is important to elucidate environmentally relevant information. Current protocols for freshwater invertebrate toxicity testing almost exclusively utilize cladocerans, amphipods or chironomids rather than the more typical aquatic insect taxa found in lotic systems. Centroptilum triangulifer is a parthenogenetic mayfly occurring in depositional habitats of streams and rivers of the Eastern U.S. and Canada. C. triangulifer is an ideal stream insect for toxicity testing under field and laboratory conditions because of its short life cycle, parthenogenetic mode of reproduction, and it represents a group considered sensitive to environmental stressors. In this study, a colony of C. triangulifer was reared using a defined diet of three diatoms, Mayamaea atomus var. permitis, Nitzschia cf. pusilla, and Achnanthidium minutissimum. Percent survival (≥80%), fecundity measurements (≥1000 eggs) and pre-egg laying weights were used as indicators of overall colony health and fitness in our laboratory water (Lab-line) and in Moderately Hard Reconstituted Water (MHRW). Lab-line reared C. triangulifer had average survival rate of 92.69% for eleven generations and 82.99% over thirteen generations. MHRW reared C. triangulifer had an average survival rate of 80.65% for four generations and three generations of fecundities greater than 1000 eggs per individual. Pre-egg laying weight and fecundity were highly correlated and a best-fit model equation was derived to estimate egg counts for future generations. Establishment of this culturing protocol provides a more ecologically relevant species for toxicity testing and aids in further stressor identification for stream bioassessments. © 2014 Elsevier Ltd.


Struewing K.A.,The McConnell Group | Struewing K.A.,Arcadis | Lazorchak J.M.,U.S. Environmental Protection Agency | Weaver P.C.,The McConnell Group | And 3 more authors.
Chemosphere | Year: 2015

Criteria for establishing water quality standards that are protective for 95% of the native species are generally based upon laboratory toxicity tests. These tests utilize common model organisms that have established test methods. However, for invertebrates these species represent mostly the zooplankton community and are not inclusive of all taxa. In order to examine a potential under-representation in emerging aquatic invertebrates the US Environmental Protection Agency has cultured a parthenogenetic mayfly, Centroptilum triangulifer (Ephemeroptera: Baetidae). This study established a 48h acute and a 14-day short-term chronic testing procedure for C. triangulifer and compared its sensitivity to two model invertebrates, Ceriodaphnia dubia and Daphnia magna. Toxicity tests were conducted to determine mortality and growth effects using standard reference toxicants: NaCl, KCl and CuSO4. In 48-h acute tests, the average LC50 for the mayfly was 659mgL-1 NaCl, 1957mgL-1 KCl, and 11μgL-1 CuSO4. IC25 values, using dry weight as the endpoint, were 228mgL-1 NaCl, 356mgL-1 KCl and 5μgL-1 CuSO4. C. triangulifer was the most sensitive species in NaCl acute and chronic growth tests. At KCl concentrations tested, C. triangulifer was less sensitive for acute tests but was equally or more sensitive than C. dubia and D. magna for growth measurements. This study determined C. triangulifer has great potential and benefits for use in ecotoxicological studies. © 2014 Elsevier Ltd.


Struewing K.A.,The McConnell Group | Lazorchak J.M.,U.S. Environmental Protection Agency | Weaver P.C.,The McConnell Group | Johnson B.R.,U.S. Environmental Protection Agency | And 2 more authors.
Chemosphere | Year: 2014

Criteria for establishing water quality standards that are protective for 95% of the native species are generally based upon laboratory toxicity tests. These tests utilize common model organisms that have established test methods. However, for invertebrates these species represent mostly the zooplankton community and are not inclusive of all taxa. In order to examine a potential under-representation in emerging aquatic invertebrates the US Environmental Protection Agency has cultured a parthenogenetic mayfly, Centroptilum triangulifer (Ephemeroptera: Baetidae). This study established a 48 h acute and a 14-day short-term chronic testing procedure for C. triangulifer and compared its sensitivity to two model invertebrates, Ceriodaphnia dubia and Daphnia magna. Toxicity tests were conducted to determine mortality and growth effects using standard reference toxicants: NaCl, KCl and CuSO4. In 48-h acute tests, the average LC50 for the mayfly was 659 mg L-1 NaCl, 1957 mg L-1 KCl, and 11 μg L-1 CuSO4. IC25 values, using dry weight as the endpoint, were 228 mg L-1 NaCl, 356 mg L-1 KCl and 5 μg L-1 CuSO4. C. triangulifer was the most sensitive species in NaCl acute and chronic growth tests. At KCl concentrations tested, C. triangulifer was less sensitive for acute tests but was equally or more sensitive than C. dubia and D. magna for growth measurements. This study determined C. triangulifer has great potential and benefits for use in ecotoxicological studies.


Weaver P.C.,The McConnell Group | Lazorchak J.M.,U.S. Environmental Protection Agency | Struewing K.A.,The McConnell Group | DeCelles S.J.,The McConnell Group | And 3 more authors.
Chemosphere | Year: 2014

Development of methods for assessing exposure and effects of waterborne toxicants on stream invertebrate species is important to elucidate environmentally relevant information. Current protocols for freshwater invertebrate toxicity testing almost exclusively utilize cladocerans, amphipods or chironomids rather than the more typical aquatic insect taxa found in lotic systems. Centroptilum triangulifer is a parthenogenetic mayfly occurring in depositional habitats of streams and rivers of the Eastern U.S. and Canada. C. triangulifer is an ideal stream insect for toxicity testing under field and laboratory conditions because of its short life cycle, parthenogenetic mode of reproduction, and it represents a group considered sensitive to environmental stressors. In this study, a colony of C. triangulifer was reared using a defined diet of three diatoms, Mayamaea atomus var. permitis, Nitzschia cf. pusilla, and Achnanthidium minutissimum. Percent survival (≥80%), fecundity measurements (≥1000 eggs) and pre-egg laying weights were used as indicators of overall colony health and fitness in our laboratory water (Lab-line) and in Moderately Hard Reconstituted Water (MHRW). Lab-line reared C. triangulifer had average survival rate of 92.69% for eleven generations and 82.99% over thirteen generations. MHRW reared C. triangulifer had an average survival rate of 80.65% for four generations and three generations of fecundities greater than 1000 eggs per individual. Pre-egg laying weight and fecundity were highly correlated and a best-fit model equation was derived to estimate egg counts for future generations. Establishment of this culturing protocol provides a more ecologically relevant species for toxicity testing and aids in further stressor identification for stream bioassessments.


Johnson B.R.,U.S. Environmental Protection Agency | Weaver P.C.,The McConnell Group | Nietch C.T.,U.S. Environmental Protection Agency | Lazorchak J.M.,U.S. Environmental Protection Agency | And 2 more authors.
Environmental Toxicology and Chemistry | Year: 2015

Anthropogenic disturbances, including those from developing energy resources, can alter stream chemistry significantly by elevating total dissolved solids. Field studies have indicated that mayflies (Order Ephemeroptera) are particularly sensitive to high total dissolved solids. In the present study, the authors measured 20-d growth and survivorship of larval Neocloeon triangulifer exposed to a gradient of brine salt (mixed NaCl and CaCl2) concentrations. Daily growth rates were reduced significantly in all salt concentrations above the control (363μScm-1) and larvae in treatments with specific conductance >812μScm-1 were in comparatively earlier developmental stages (instars) at the end of the experiment. Survivorship declined significantly when specific conductance was >1513μScm-1 and the calculated 20-d 50% lethal concentration was 2866μScm-1. The present study's results provide strong experimental evidence that elevated ion concentrations similar to those observed in developing energy resources, such as oil and gas drilling or coal mining, can adversely affect sensitive aquatic insect species. © 2014 SETAC.


PubMed | U.S. Environmental Protection Agency, Stroud Water Research Center, The McConnell Group and North Carolina State University
Type: | Journal: Chemosphere | Year: 2015

Criteria for establishing water quality standards that are protective for 95% of the native species are generally based upon laboratory toxicity tests. These tests utilize common model organisms that have established test methods. However, for invertebrates these species represent mostly the zooplankton community and are not inclusive of all taxa. In order to examine a potential under-representation in emerging aquatic invertebrates the US Environmental Protection Agency has cultured a parthenogenetic mayfly, Centroptilum triangulifer (Ephemeroptera: Baetidae). This study established a 48h acute and a 14-day short-term chronic testing procedure for C. triangulifer and compared its sensitivity to two model invertebrates, Ceriodaphnia dubia and Daphnia magna. Toxicity tests were conducted to determine mortality and growth effects using standard reference toxicants: NaCl, KCl and CuSO4. In 48-h acute tests, the average LC50 for the mayfly was 659mgL(-1) NaCl, 1957mgL(-1) KCl, and 11gL(-1) CuSO4. IC25 values, using dry weight as the endpoint, were 228mgL(-1) NaCl, 356mgL(-1) KCl and 5gL(-1) CuSO4. C. triangulifer was the most sensitive species in NaCl acute and chronic growth tests. At KCl concentrations tested, C. triangulifer was less sensitive for acute tests but was equally or more sensitive than C. dubia and D. magna for growth measurements. This study determined C. triangulifer has great potential and benefits for use in ecotoxicological studies.

Loading The McConnell Group collaborators
Loading The McConnell Group collaborators