Time filter

Source Type

Today about 1 in 10 Americans suffer from a rare disease, and half of these patients are children, according to the Global Genes Project. There are some 7,000 known rare disorders ranging from benign abnormalities to life-threatening disease. Many affected children pass away before a diagnosis can be made, leaving families to grieve without knowing what might have been done to help them, or how to avoid additional brothers or sisters being affected. At Boston Children's, investigators at The Manton Center for Orphan Disease Research are focused on diagnosing children with a wide variety of rare genetic conditions. While strides have been made, the interpretation of sequencing results can be a labor-intensive process, presenting an overload of information whose analysis may not always yield a definitive causative variant. In the new collaboration, Watson will be trained in nephrology by reading related medical literature and aggregating information on causative mutations for steroid-resistant nephrotic syndrome (SRNS), a rare genetic form of kidney disease. Then, experts at Boston Children's Hospital intend to feed genomic sequencing data from retrospective patients into Watson to further train the system. The goal is to create a cognitive system that can help clinicians interpret a child's genome sequencing data, compare this with medical literature and quickly identify anomalies that may be responsible for the unexplained symptoms. "Coping with an undiagnosed illness is a tremendous challenge for many of the children and families we see," said Christopher Walsh, MD, PhD, director of the Division of Genetics and Genomics at Boston Children's Hospital. "Watson can help us ensure we've left no stone unturned in our search to diagnose and cure these rare diseases so we can uncover all relevant insights from the patient's clinical history, DNA data, supporting evidence and population health data." Even with a diagnosis, effective treatment for rare conditions can be elusive. For example, SRNS are usually unresponsive to immunosuppressive therapy, and often must go on chronic dialysis or wait for a kidney transplant—only to have their disease frequently recur in the new organ. "One of Watson's talents is quickly finding hidden insights and connecting patterns in massive volumes of data," said Deborah DiSanzo, general manager, IBM Watson Health. "Rare disease diagnosis is a fitting application for cognitive technology that can assimilate different types and sources of data to help doctors solve medical mysteries. For the kids and their families suffering without a diagnosis, our goal is to team with the world's leading experts to create a cognitive tool that will make it easier for doctors to find the needle in the haystack, uncovering all relevant medical advances to support effective care for the child." The kidney project will be done in collaboration with Friedhelm Hildebrandt, MD, chief of the Division of Nephrology at Boston Children's and Claritas Genomics. Following its successful completion, Boston Children's plans to expand the effort into undiagnosed neurologic disorders and other disease areas studied by The Manton Center, improving diagnostic and treatment services for patients nationwide. Boston Children's Hospital is part of the Undiagnosed Diseases Network, a NIH program that aims to solve medical mysteries by integrating genetics, genomics, and rare disease expertise. Boston Children's was also the incubator behind Claritas Genomics, a genetic diagnostic laboratory that offers genetic testing and develops new diagnostic tests and solutions, and organizer of the CLARITY Undiagnosed Challenge, a crowd sourcing competition seeking best practices in clinical genomics. The results and winner of the Challenge will be announced at the Boston Children's Hospital Global Pediatric Innovation Summit on November 10. IBM has been developing Watson's ability to analyze genomic data in collaboration with leading cancer centers around the world. The system is currently being used at 16 cancer institutes to analyze and translate genomic data to help oncologists uncover personalized treatment options. The new project with Boston Children's represents the first time this technology will be applied to help clinicians efficiently identify possible options for rare disease diagnosis and treatment. IBM and Boston Children's are also working together to build OPENPediatrics, an online platform designed to bring life-saving medical knowledge to pediatric caregivers worldwide. In September, the two organizations announced they will integrate Watson's deep and iterative question and answer capability to enhance and scale the OPENPediatrics initiative. Explore further: Project will apply cognitive computing to uncover new patient treatment options

Doherty L.,The Manton Center for Orphan Disease Research | Sheen M.R.,The Manton Center for Orphan Disease Research | Vlachos A.,Feinstein Institute for Medical Research | Vlachos A.,Yeshiva University | And 23 more authors.
American Journal of Human Genetics | Year: 2010

Diamond-Blackfan anemia (DBA), an inherited bone marrow failure syndrome characterized by anemia that usually presents before the first birthday or in early childhood, is associated with birth defects and an increased risk of cancer. Although anemia is the most prominent feature of DBA, the disease is also characterized by growth retardation and congenital malformations, in particular craniofacial, upper limb, heart, and urinary system defects that are present in ∼30%-50% of patients. DBA has been associated with mutations in seven ribosomal protein (RP) genes, RPS19, RPS24, RPS17, RPL35A, RPL5, RPL11, and RPS7, in about 43% of patients. To continue our large-scale screen of RP genes in a DBA population, we sequenced 35 ribosomal protein genes, RPL15, RPL24, RPL29, RPL32, RPL34, RPL9, RPL37, RPS14, RPS23, RPL10A, RPS10, RPS12, RPS18, RPL30, RPS20, RPL12, RPL7A, RPS6, RPL27A, RPLP2, RPS25, RPS3, RPL41, RPL6, RPLP0, RPS26, RPL21, RPL36AL, RPS29, RPL4, RPLP1, RPL13, RPS15A, RPS2, and RPL38, in our DBA patient cohort of 117 probands. We identified three distinct mutations of RPS10 in five probands and nine distinct mutations of RPS26 in 12 probands. Pre-rRNA analysis in lymphoblastoid cells from patients bearing mutations in RPS10 and RPS26 showed elevated levels of 18S-E pre-rRNA. This accumulation is consistent with the phenotype observed in HeLa cells after knockdown of RPS10 or RPS26 expression with siRNAs, which indicates that mutations in the RPS10 and RPS26 genes in DBA patients affect the function of the proteins in rRNA processing. © 2010 The American Society of Human Genetics.

PubMed | The Manton Center for Orphan Disease Research
Type: Journal Article | Journal: Clinical chemistry | Year: 2014

Distinction between asymptomatic and potentially clinically significant forms of galactosemia due to UDP-galactose 4-epimerase (GALE) deficiency requires enzyme measurement in erythrocytes and other cells. We sought to develop a GALE assay using a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method.The reversible GALE assay was conducted with UDPGal as a substrate. The coeluting reaction product, uridine diphosphate glucose (UDPGlc), and its isomeric substrate, uridine diphosphate galactose (UDPGal), were detected by MS/MS at mass transitions 565 > 280, 565 > 241 and 565 > 403. The UDPGal was enriched in mass transition 565 > 403 compared with UDPGlc, whereas the UDPGlc was enriched in the mass transition 565 > 241 compared with UDPGal. The percentage of UDPGal in the reaction mixture was calculated by use of the ratio of ion intensities of the 2 daughter ions and a fourth-order polynomial calibrator curve.The method yielded a mean (SD) GALE activity of 9.8 (2.2) mol g(-1) hemoglobin h(-1) in erythrocyte extracts from 27 controls. The apparent Km of the substrate, UDPGal, was 0.05 mmol/L. The GALE activity ranged from 433 to 993 mol g(-1) protein h(-1) in control lymphoblast extracts. In a blinded test of 22 subjects suspected of GALE deficiency, we identified 6 individuals whose residual activities were below the range of controls, compatible with intermediate GALE deficiency.This assay can be used to distinguish the different forms of GALE deficiency. From an analytical standpoint, differentiating isomers on the basis of fragment intensity ratios should also prove useful for analogous enzymatic studies involving substrates and products that are structural isomers.

Loading The Manton Center for Orphan Disease Research collaborators
Loading The Manton Center for Orphan Disease Research collaborators