Time filter

Source Type

Baltimore Highlands, MD, United States

Ferrer P.,The Malaria Research Institute | Roy C.N.,Johns Hopkins University | Sullivan D.J.,The Malaria Research Institute
Microbes and Infection | Year: 2016

Treatment of iron deficiency anemia in malaria endemic areas is complicated as iron supplementation increases malaria risk while malaria decreases iron absorption. Here we measured the influence of hepcidin expression and non-heme iron during iron supplementation on hepatic Plasmodium berghei numbers in anemic and non-anemic mice. Despite elevated hepatic non-heme iron on the high iron diet, elevated hepcidin expression is associated with less parasite bioavailable iron and lower hepatic parasite loads in anemic, iron deficient mice after both two and six weeks of supplementation. A marginal trend to lower parasite hepatic numbers was seen in non-anemic, iron replete mice. In a transgenic model of severe anemia, mice with a deletion in Sec15l1, which reportedly have normal liver iron and normal hepcidin expression, there were no changes in liver parasite numbers or blood stage numbers or outcome in the lethal Plasmodium yoelii model. In summary during iron supplementation the lower hepatic malaria numbers are regulated more by hepcidin than the absolute level of non-heme hepatic iron. © 2015 Institut Pasteur. Source

Armistead J.S.,The Malaria Research Institute | Armistead J.S.,Walter and Eliza Hall Institute of Medical Research | Morlais I.,Institute Of Recherche Pour Le Developpement Ird Oceac | Mathias D.K.,The Malaria Research Institute | And 11 more authors.
Infection and Immunity | Year: 2014

Malaria transmission-blocking vaccines (TBVs) represent a promising approach for the elimination and eradication of this disease. AnAPN1 is a lead TBV candidate that targets a surface antigen on the midgut of the obligate vector of the Plasmodium parasite, the Anopheles mosquito. In this study, we demonstrated that antibodies targeting AnAPN1 block transmission of Plasmodium falciparum and Plasmodium vivax across distantly related anopheline species in countries to which malaria is endemic. Using a biochemical and immunological approach, we determined that the mechanism of action for this phenomenon stems from antibody recognition of a single protective epitope on AnAPN1, which we found to be immunogenic in murine and nonhuman primate models and highly conserved among anophelines. These data indicate that AnAPN1 meets the established target product profile for TBVs and suggest a potential key role for an AnAPN1-based panmalaria TBV in the effort to eradicate malaria.© 2014, American Society for Microbiology. Source

Ferrer P.,The Malaria Research Institute | Tripathi A.K.,The Malaria Research Institute | Clark M.A.,University of North Carolina at Chapel Hill | Hand C.C.,University of North Carolina at Chapel Hill | And 2 more authors.
PLoS ONE | Year: 2012

Iron chelators for the treatment of malaria have proven therapeutic activity in vitro and in vivo in both humans and mice, but their clinical use is limited by the unsuitable absorption and pharmacokinetic properties of the few available iron chelators. FBS0701, (S)3-(HO)-desazadesferrithiocin-polyether [DADFT-PE], is an oral iron chelator currently in Phase 2 human studies for the treatment of transfusional iron overload. The drug has very favorable absorption and pharmacokinetic properties allowing for once-daily use to deplete circulating free iron with human plasma concentrations in the high μM range. Here we show that FBS0701 has inhibition concentration 50% (IC50) of 6 μM for Plasmodium falciparum in contrast to the IC50 for deferiprone and deferoxamine at 15 and 30 μM respectively. In combination, FBS0701 interfered with artemisinin parasite inhibition and was additive with chloroquine or quinine parasite inhibition. FBS0701 killed early stage P. falciparum gametocytes. In the P. berghei Thompson suppression test, a single dose of 100 mg/kg reduced day three parasitemia and prolonged survival, but did not cure mice. Treatment with a single oral dose of 100 mg/kg one day after infection with 10 million lethal P. yoelii 17XL cured all the mice. Pretreatment of mice with a single oral dose of FBS0701 seven days or one day before resulted in the cure of some mice. Plasma exposures and other pharmacokinetics parameters in mice of the 100 mg/kg dose are similar to a 3 mg/kg dose in humans. In conclusion, FBS0701 demonstrates a single oral dose cure of the lethal P. yoelii model. Significantly, this effect persists after the chelator has cleared from plasma. FBS0701 was demonstrated to remove labile iron from erythrocytes as well as enter erythrocytes to chelate iron. FBS0701 may find clinically utility as monotherapy, a malarial prophylactic or, more likely, in combination with other antimalarials. © 2012 Ferrer et al. Source

Tweedell R.,The Malaria Research Institute | Tao D.,The Malaria Research Institute | Dinglasan R.R.,The Malaria Research Institute
Proteomics | Year: 2015

Kupffer cells (KCs) are the first line of defense in the liver against pathogens, yet several microbes successfully target the liver, bypass immune surveillance, and effectively develop in this tissue. Our current, albeit poor, understanding of KC-pathogen interactions has been largely achieved through the study of primary cells, requiring isolation from large numbers of animals. To facilitate the study of KC biology, an immortalized rat KC line 1, RKC1, was developed. We performed a comparative global proteomic analysis of RKC1 and primary rat KCs (PRKC) to characterize their respective responses to lipopolysaccharide-mediated immune stimulation. We identified patent differences in the proteomic response profile of RKC1 and PRKC to lipopolysaccharide. We observed that PRKC upregulated more immune function pathways and exhibited marked changes in cellular morphology following stimulation. We consequently analyzed the cytoskeletal signaling pathways of these cells in light of the fact that macrophages are known to induce cytoskeletal changes in response to pathogens. Our findings suggest that KCs respond differently to inflammatory stimulus than do monocyte-derived macrophages, and such data may provide insight into how pathogens, such as the malaria parasite, may have evolved mechanisms of liver entry through KCs without detection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source

Discover hidden collaborations