Time filter

Source Type

Li P.,The Key Laboratory of Molecular Microbiology and Technology | Wang L.,Nankai University | Feng L.,Tianjin Key Laboratory of Microbial Functional Genomics
Journal of Bacteriology

The cold-tolerant bacterium Pusillimonas sp. strain T7-7 is able to utilize diesel oils (C5 to C30 alkanes) as a sole carbon and energy source. In the present study, bioinformatics, proteomics, and real-time reverse transcriptase PCR approaches were used to identify the alkane hydroxylation system present in this bacterium. This system is composed of a Rieske-type monooxygenase, a ferredoxin, and an NADH-dependent reductase. The function of the monooxygenase, which consists of one large (46.711 kDa) and one small (15.355 kDa) subunit, was further studied using in vitro biochemical analysis and in vivo heterologous functional complementation tests. The purified large subunit of the monooxygenase was able to oxidize alkanes ranging from pentane (C5) to tetracosane (C24) using NADH as a cofactor, with greatest activity on the C15 substrate. The large subunit also showed activity on several alkane derivatives, including nitromethane and methane sulfonic acid, but it did not act on any aromatic hydrocarbons. The optimal reaction condition of the large subunit is pH 7.5 at 30°C. Fe2+ can enhance the activity of the enzyme evidently. This is the first time that an alkane monooxygenase system belonging to the Rieske non-heme iron oxygenase family has been identified in a bacterium. © 2013, American Society for Microbiology. Source

Li D.,Nankai University | Li D.,Tianjin Key Laboratory of Microbial Functional Genomics | Liu B.,Nankai University | Liu B.,Tianjin Key Laboratory of Microbial Functional Genomics | And 14 more authors.
Journal of Microbiological Methods

Urinary tract infections (UTIs) are one of the most common bacterial infections and are predominantly caused by uropathogenic Escherichia coli (UPEC). E. coli strains belonging to 14 serogroups, including O1, O2, O4, O6, O7, O8, O15, O16, O18, O21, O22, O25, O75 and O83, are the most frequently detected UPEC strains in a diverse range of clinical urine specimens. In the current study, the O-antigen gene clusters of E. coli serogroups O1, O2, O18 and O75 were characterized. A multiplex PCR method based on O-antigen-specific genes was developed for the simultaneous detection of all 14 E. coli serogroups. The multiplex PCR method was shown to be highly specific and reproducible when tested against 186 E. coli and Shigella O-serogroup reference strains, 47 E. coli clinical isolates and 10 strains of other bacterial species. The sensitivity of the multiplex PCR method was analyzed and shown to detect O-antigen-specific genes in samples containing 25. ng of genomic DNA or in mock urine specimens containing 40 colony-forming units (CFUs) per ml. Five urine specimens from hospital were examined using this multiplex PCR method, and the result for one sample was verified by the conventional serotyping methods. The multiplex PCR method developed herein can be used for the detection of relevant E. coli strains from clinical and/or environmental samples, and it is particularly useful for epidemiologic analysis of urine specimens from patients with UTIs. © 2010 Elsevier B.V. Source

Wang H.,Nankai University | Wang H.,Tianjin Key Laboratory of Microbial Functional Genomics | Liu B.,Nankai University | Liu B.,Tianjin Key Laboratory of Microbial Functional Genomics | And 5 more authors.

Fis, one of the most important nucleoid-associated proteins, functions as a global regulator of transcription in bacteria that has been comprehensively studied in Escherichia coli K12. Fis also influences the virulence of Salmonella enterica and pathogenic E. coli by regulating their virulence genes, however, the relevant mechanism is unclear. In this report, using combined RNA-seq and chromatin immunoprecipitation (ChIP)-seq technologies, we first identified 1646 Fis-regulated genes and 885 Fis-binding targets in the S. enterica serovar Typhimurium, and found a Fis regulon different from that in E. coli. Fis has been reported to contribute to the invasion ability of S. enterica. By using cell infection assays, we found it also enhances the intracellular replication ability of S. enterica within macrophage cell, which is of central importance for the pathogenesis of infections. Salmonella pathogenicity islands (SPI)-1 and SPI-2 are crucial for the invasion and survival of S. enterica in host cells. Using mutation and overexpression experiments, real-time PCR analysis, and electrophoretic mobility shift assays, we demonstrated that Fis regulates 63 of the 94 Salmonella pathogenicity island (SPI)-1 and SPI-2 genes, by three regulatory modes: i) binds to SPI regulators in the gene body or in upstream regions; ii) binds to SPI genes directly to mediate transcriptional activation of themselves and downstream genes; iii) binds to gene encoding OmpR which affects SPI gene expression by controlling SPI regulators SsrA and HilD. Our results provide new insights into the impact of Fis on SPI genes and the pathogenicity of S. enterica. © 2013 Wang et al. Source

Feng J.,Hubei University | Liu B.,Nankai University | Zhang Z.,Hubei University | Ren Y.,Nankai University | And 9 more authors.

Natrinema sp. J7-2 is an extreme haloarchaeon capable of growing on synthetic media without amino acid supplements. Here we report the complete genome sequence of Natrinema sp. J7-2 which is composed of a 3,697,626-bp chromosome and a 95,989-bp plasmid pJ7-I. This is the first complete genome sequence of a member of the genus Natrinema. We demonstrate that Natrinema sp. J7-2 can use gluconate, glycerol, or acetate as the sole carbon source and that its genome encodes complete metabolic pathways for assimilating these substrates. The biosynthetic pathways for all 20 amino acids have been reconstructed, and we discuss a possible evolutionary relationship between the haloarchaeal arginine synthetic pathway and the bacterial lysine synthetic pathway. The genome harbors the genes for assimilation of ammonium and nitrite, but not nitrate, and has a denitrification pathway to reduce nitrite to N2O. Comparative genomic analysis suggests that most sequenced haloarchaea employ the TrkAH system, rather than the Kdp system, to actively uptake potassium. The genomic analysis also reveals that one of the three CRISPR loci in the Natrinema sp. J7-2 chromosome is located in an integrative genetic element and is probably propagated via horizontal gene transfer (HGT). Finally, our phylogenetic analysis of haloarchaeal genomes provides clues about evolutionary relationships of haloarchaea. © 2012 Feng et al. Source

Liu B.,Nankai University | Liu B.,The Key Laboratory of Molecular Microbiology and Technology | Knirel Y.A.,RAS N. D. Zelinsky Institute of Organic Chemistry | Feng L.,Nankai University | And 9 more authors.
FEMS Microbiology Reviews

This review covers the structures and genetics of the 46 O antigens of Salmonella, a major pathogen of humans and domestic animals. The variation in structures underpins the serological specificity of the 46 recognized serogroups. The O antigen is important for the full function and virulence of many bacteria, and the considerable diversity of O antigens can confer selective advantage. Salmonella O antigens can be divided into two major groups: those which have N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine (GalNAc) and those which have galactose (Gal) as the first sugar in the O unit. In recent years, we have determined 21 chemical structures and sequenced 28 gene clusters for GlcNAc-/GalNAc-initiated O antigens, thus completing the structure and DNA sequence data for the 46 Salmonella O antigens. The structures and gene clusters of the GlcNAc-/GalNAc-initiated O antigens were found to be highly diverse, and 24 of them were found to be identical or closely related to Escherichia coli O antigens. Sequence comparisons indicate that all or most of the shared gene clusters were probably present in the common ancestor, although alternative explanations are also possible. In contrast, the better-known eight Gal-initiated O antigens are closely related both in structures and gene cluster sequences. In this review, we systematically analyzed and summarized Salmonella O-antigen diversity including the chemical structures, gene cluster sequences, and evolutionary aspects. © 2013 Federation of European Microbiological Societies. Source

Discover hidden collaborations