Time filter

Source Type

News Article | December 12, 2016
Site: www.eurekalert.org

In 2015, the All Sky Automated Survey for SuperNovae (ASAS-SN) detected an event, named ASASSN-15lh, that was recorded as the brightest supernova ever -- and categorised as a superluminous supernova, the explosion of an extremely massive star at the end of its life. It was twice as bright as the previous record holder, and at its peak was 20 times brighter than the total light output of the entire Milky Way. An international team, led by Giorgos Leloudas at the Weizmann Institute of Science, Israel, and the Dark Cosmology Centre, Denmark, has now made additional observations of the distant galaxy, about 4 billion light-years from Earth, where the explosion took place and they have proposed a new explanation for this extraordinary event. "We observed the source for 10 months following the event and have concluded that the explanation is unlikely to lie with an extraordinarily bright supernova. Our results indicate that the event was probably caused by a rapidly spinning supermassive black hole as it destroyed a low-mass star," explains Leloudas. In this scenario, the extreme gravitational forces of a supermassive black hole, located in the centre of the host galaxy, ripped apart a Sun-like star that wandered too close -- a so-called tidal disruption event, something so far only observed about 10 times. In the process, the star was "spaghettified" and shocks in the colliding debris as well as heat generated in accretion led to a burst of light. This gave the event the appearance of a very bright supernova explosion, even though the star would not have become a supernova on its own as it did not have enough mass. The team based their new conclusions on observations from a selection of telescopes, both on the ground and in space. Among them was the Very Large Telescope at ESO's Paranal Observatory, the New Technology Telescope at ESO's La Silla Observatory and the NASA/ESA Hubble Space Telescope [1]. The observations with the NTT were made as part of the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). "There are several independent aspects to the observations that suggest that this event was indeed a tidal disruption and not a superluminous supernova," explains coauthor Morgan Fraser from the University of Cambridge, UK (now at University College Dublin, Ireland). In particular, the data revealed that the event went through three distinct phases over the 10 months of follow-up observations. These data overall more closely resemble what is expected for a tidal disruption than a superluminous supernova. An observed re-brightening in ultraviolet light as well as a temperature increase further reduce the likelihood of a supernova event. Furthermore, the location of the event -- a red, massive and passive galaxy -- is not the usual home for a superluminous supernova explosion, which normally occur in blue, star-forming dwarf galaxies. Although the team say a supernova source is therefore very unlikely, they accept that a classical tidal disruption event would not be an adequate explanation for the event either. Team member Nicholas Stone from Columbia University, USA, elaborates: "The tidal disruption event we propose cannot be explained with a non-spinning supermassive black hole. We argue that ASASSN-15lh was a tidal disruption event arising from a very particular kind of black hole." The mass of the host galaxy implies that the supermassive black hole at its centre has a mass of at least 100 million times that of the Sun. A black hole of this mass would normally be unable to disrupt stars outside of its event horizon -- the boundary within which nothing is able to escape its gravitational pull. However, if the black hole is a particular kind that happens to be rapidly spinning -- a so-called Kerr black hole -- the situation changes and this limit no longer applies. "Even with all the collected data we cannot say with 100% certainty that the ASASSN-15lh event was a tidal disruption event," concludes Leloudas. "But it is by far the most likely explanation." [1] As well as the data from ESO's Very Large Telescope, the New Technology Telescope and the NASA/ESA Hubble Space Telescope the team used observations from NASA's Swift telescope, the Las Cumbres Observatory Global Telescope (LCOGT), the Australia Telescope Compact Array, ESA's XMM-Newton, the Wide-Field Spectrograph (WiFeS and the Magellan Telescope. This research was presented in a paper entitled "The Superluminous Transient ASASSN-15lh as a Tidal Disruption Event from a Kerr Black Hole", by G. Leloudas et al. to appear in the new Nature Astronomy magazine. The team is composed of G. Leloudas (Weizmann Institute of Science, Rehovot, Israel; Niels Bohr Institute, Copenhagen, Denmark), M. Fraser (University of Cambridge, Cambridge, UK), N. C. Stone (Columbia University, New York, USA), S. van Velzen (The Johns Hopkins University, Baltimore, USA), P. G. Jonker (Netherlands Institute for Space Research, Utrecht, the Netherlands; Radboud University Nijmegen, Nijmegen, the Netherlands), I. Arcavi (Las Cumbres Observatory Global Telescope Network, Goleta, USA; University of California, Santa Barbara, USA), C. Fremling (Stockholm University, Stockholm, Sweden), J. R. Maund (University of Sheffield, Sheffield, UK), S. J. Smartt (Queen's University Belfast, Belfast, UK), T. Krühler (Max-Planck-Institut für extraterrestrische Physik, Garching b. München, Germany), J. C. A. Miller-Jones (ICRAR - Curtin University, Perth, Australia), P. M. Vreeswijk (Weizmann Institute of Science, Rehovot, Israel), A. Gal-Yam (Weizmann Institute of Science, Rehovot, Israel), P. A. Mazzali (Liverpool John Moores University, Liverpool, UK; Max-Planck-Institut für Astrophysik, Garching b. München, Germany), A. De Cia (European Southern Observatory, Garching b. München, Germany), D. A. Howell (Las Cumbres Observatory Global Telescope Network, Goleta, USA; University of California Santa Barbara, Santa Barbara, USA), C. Inserra (Queen's University Belfast, Belfast, UK), F. Patat (European Southern Observatory, Garching b. München, Germany), A. de Ugarte Postigo (Instituto de Astrofisica de Andalucia, Granada, Spain; Niels Bohr Institute, Copenhagen, Denmark), O. Yaron (Weizmann Institute of Science, Rehovot, Israel), C. Ashall (Liverpool John Moores University, Liverpool, UK), I. Bar (Weizmann Institute of Science, Rehovot, Israel), H. Campbell (University of Cambridge, Cambridge, UK; University of Surrey, Guildford, UK), T.-W. Chen (Max-Planck-Institut für extraterrestrische Physik, Garching b. München, Germany), M. Childress (University of Southampton, Southampton, UK), N. Elias-Rosa (Osservatoria Astronomico di Padova, Padova, Italy), J. Harmanen (University of Turku, Piikkiö, Finland), G. Hosseinzadeh (Las Cumbres Observatory Global Telescope Network, Goleta, USA; University of California Santa Barbara, Santa Barbara, USA), J. Johansson (Weizmann Institute of Science, Rehovot, Israel), T. Kangas (University of Turku, Piikkiö, Finland), E. Kankare (Queen's University Belfast, Belfast, UK), S. Kim (Pontificia Universidad Católica de Chile, Santiago, Chile), H. Kuncarayakti (Millennium Institute of Astrophysics, Santiago, Chile; Universidad de Chile, Santiago, Chile), J. Lyman (University of Warwick, Coventry, UK), M. R. Magee (Queen's University Belfast, Belfast, UK), K. Maguire (Queen's University Belfast, Belfast, UK), D. Malesani (University of Copenhagen, Copenhagen, Denmark; DTU Space, Denmark), S. Mattila (University of Turku, Piikkiö, Finland; Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Piikkiö, Finland; University of Cambridge, Cambridge, UK), C. V. McCully (Las Cumbres Observatory Global Telescope Network, Goleta, USA; University of California Santa Barbara, Santa Barbara, USA), M. Nicholl (Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA), S. Prentice (Liverpool John Moores University, Liverpool, UK), C. Romero-Ca[ñ] - https:/ izales (Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute of Astrophysics, Santiago, Chile), S. Schulze (Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute of Astrophysics, Santiago, Chile), K. W. Smith (Queen's University Belfast, Belfast, UK), J. Sollerman (Stockholm University, Stockholm, Sweden), M. Sullivan (University of Southampton, Southampton, UK), B. E. Tucker (Australian National University, Canberra, Australia; ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Australia), S. Valenti (University of California, Davis, USA), J. C. Wheeler (University of Texas at Austin, Austin, USA), and D. R. Young (Queen's University Belfast, Belfast, UK). ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become "the world's biggest eye on the sky".


News Article | March 1, 2017
Site: www.eurekalert.org

Results of a small study of adults with autism at Johns Hopkins has added to evidence that their brains can learn to compensate for some language comprehension challenges that are a hallmark of the disorder in children. Studies analyzing electrical activity in the brains of children with autism have shown that they have difficulty sorting out pairs of words that are unrelated -- like "clock" and "frog" -- from those that are related -- like "baby" and "bottle" -- making it hard for them to process written or spoken language. Moreover, investigators believed that for most children with autism, this struggle with language persisted throughout their lives. Results of the new research from specialists at Johns Hopkins Medicine, published in the March issue of the Journal of Autism and Developmental Disorders, suggests that at least some adults with autism process unrelated words as well as adults without the disorder and their brains use distinct learning strategies to do so. "There is often an assumption that people with autism will always have problems understanding the meaning of language," says Emily Coderre, Ph.D., a postdoctoral fellow in neurology at the Johns Hopkins University School of Medicine. "But our results suggest that adults with autism seem to use an alternative mechanism to process language that results in a different pattern in the brain." For the study, the researchers recruited 20 adults with autism spectrum disorder, considered mild to moderate. All participants had "normal" verbal abilities, according to standardized tests. Those with autism spectrum disorder were diagnosed by a specialist on the team based on their score on the Autism Diagnostic Observation Schedule. Some participants were diagnosed early in life, and others not until adulthood. Many participants went to regular schools with special education tracks. Some participants had graduated high school, and some went through college. The research team also recruited a matching group of 20 participants without autism to serve as a comparative control group. Participants overall ranged in age from 18 to 69. Six were female, 35 were white, one was Asian, two were African-American, one was Hispanic and one was mixed race. All participants completed a 90-minute computer task that asked them to decide whether two pictures or two words were related (e.g., baby and bottle) or unrelated (e.g., frog and clock). The task designers chose 400 pairs of tangible nouns, half of them in the form of words and the other half displayed as pictures. One hundred of the noun pairs were related words, 100 were related pictures, 100 were unrelated words and 100 were unrelated pictures. The screen showed a picture or a word for 1 second and after a brief pause displayed the second picture or word. While the participants completed the task, the researchers monitored their brain's electrical activity using an electroencephalogram (EEG) that recorded activity from 256 electrodes. For their analyses, the researchers looked at the brain activity from nine small clusters of electrodes on the front left, middle and right of the head over the frontal cortex; in the left, middle and right of the top of the head over the central brain; and on the left, right and middle part of the back top of the head, where the parietal lobe is located. When analyzing unrelated pictures or words, people with typical development have a spike on the EEG during the 200- to 800-millisecond window following the second word or photo, known as an N400 response. Researchers believe the N400 response reflects the brain's ability to recognize that something is "off" and that two words or pictures aren't related in a meaningful way. When looking at related and unrelated pictures, the people with autism had the same N400 spike on the EEG readout as the people without autism. Contrary to findings from earlier studies in children with autism, adults with autism also had the N400 spike in electrical activity on the EEG when looking at related and unrelated words. In the controls, the response occurred at 250 to 500 milliseconds in the front of the head and from approximately 400 to 800 milliseconds over the top and top rear of the head. The response in the adults with autism started later, from 400 to 800 milliseconds in both the top and top rear of the head. From 400 to 800 milliseconds, the N400 spike was relatively evenly distributed over left and right sides of the head for the control participants, whereas in adults with autism, the spike was stronger over the right side of the head. Coderre says that these differences between the groups -- an earlier onset of the N400 response for controls and a more right-sided N400 response for the adults with autism -- suggest that the two groups used different strategies to think about the meaning of the words. She points out that overall, the adults with autism showed a similar N400 response to the controls, suggesting that they weren't impaired at teasing apart the unrelated from the related words, contrary to previous studies in children with autism. "It appears that although the adults with autism in our study have brains that are 'wired' differently than those without autism, our findings strongly suggest this different wiring can still enable them to achieve good cognitive and language abilities, at least on this one measure," she says. "It is possible that some adults with mild or moderate forms of autism may have developed compensatory learning strategies that allow them to process language as well as people without autism," says Coderre. She plans to repeat this experiment in children with mild to moderate autism to verify that the differences seen between adults and children are due to learned responses. "If we can understand those compensatory strategies better, then teachers can use this information in language programs for children or those with more severe language deficits to help them develop these alternative strategies faster and earlier," she adds. "I hope our study sends a hopeful message to people with autism or their parents." Coderre says that one limitation of her study is that they used single words for their analysis, simplifying it, whereas others in previous studies used full sentences in their study design, which may have affected the results. She also points out that they asked participants to think about whether the two words were related or not, which may have prompted them to use more explicit compensatory strategies. In future studies, she plans to repeat this experiment using an "implicit" task, in which participants aren't told to think about the relationship between the words, allowing her to verify whether these results were due to learned compensatory strategies in adults with autism. About 3.5 million people in the U.S. have autism, according to the National Institutes of Health, and about a quarter of those are nonverbal. Those with speech have difficulty with complex language processing, like understanding meaning, emotional states in the voice or metaphors. Additional authors on the study include Mariya Chernenok, Barry Gordon and Kerry Ledoux of The Johns Hopkins University. The study was funded by grants from the Therapeutic Cognitive Neuroscience Fund and the Benjamin and Adith Miller Family Endowment on Aging, Alzheimer's, and Autism Research.


In a small double-blind study, Johns Hopkins researchers report that a substantial majority of people suffering cancer-related anxiety or depression found considerable relief for up to six months from a single large dose of psilocybin -- the active compound in hallucinogenic "magic mushrooms." The researchers cautioned that the drug was given in tightly controlled conditions in the presence of two clinically trained monitors and said they do not recommend use of the compound outside of such a research or patient care setting. The Johns Hopkins team released its study results, involving 51 adult patients, concurrently with researchers from New York University Langone Medical Center, who conducted a similarly designed study on 29 participants. Both studies are published in the Journal of Psychopharmacology on Dec. 1. The Johns Hopkins group reported that psilocybin decreased clinician- and patient-rated depressed mood, anxiety and death anxiety, and increased quality of life, life meaning and optimism. Six months after the final session of treatment, about 80 percent of participants continued to show clinically significant decreases in depressed mood and anxiety, with about 60 percent showing symptom remission into the normal range. Eighty-three percent reported increases in well-being or life satisfaction. Some 67 percent of participants reported the experience as one of the top five meaningful experiences in their lives, and about 70 percent reported the experience as one of the top five spiritually significant lifetime events. "The most interesting and remarkable finding is that a single dose of psilocybin, which lasts four to six hours, produced enduring decreases in depression and anxiety symptoms, and this may represent a fascinating new model for treating some psychiatric conditions," says Roland Griffiths, Ph.D., professor of behavioral biology in the Departments of Psychiatry and Behavioral Sciences and of Neuroscience at the Johns Hopkins University School of Medicine. He notes that traditional psychotherapy offered to people with cancer, including behavioral therapy and antidepressants, can take weeks or even months, isn't always effective, and in the case of some drugs, such as benzodiazepines, may have addictive and other troubling side effects. Griffiths says his team's new study grew out of a decade of research at Johns Hopkins on the effects of psilocybin in healthy volunteers, which found that psilocybin can consistently produce positive changes in mood, behavior and spirituality when administered to carefully screened and prepared participants. The study was designed to see if psilocybin could produce similar results in psychologically distressed cancer patients. "A life-threatening cancer diagnosis can be psychologically challenging, with anxiety and depression as very common symptoms," says Griffiths. "People with this kind of existential anxiety often feel hopeless and are worried about the meaning of life and what happens upon death." For the study, the investigators recruited 51 participants diagnosed with life-threatening cancers, most of which were recurrent or metastatic. They were chosen from a total of 566 individuals reached through flyers, web advertisements and physician referrals. Most participants had breast, upper digestive, GI, genitourinary or blood cancer, and each had been given a formal psychiatric diagnosis, including an anxiety or depressive disorder. Half of the participants were female with an average age of 56. Ninety-two percent were white, 4 percent were African-American and 2 percent were Asian. Each participant had two treatment sessions scheduled five weeks apart, one with a very low psilocybin dose (1 or3 milligrams per 70 kilograms) taken in a capsule and meant to act as a "control" placebo because the dose was too low to produce effects. In the other session, participants received a capsule with what is considered a moderate or high dose (22 or 30 milligrams per 70 kilograms). To minimize expectancy effects, the participants and the staff members supervising the sessions were told that the participants would receive psilocybin on both sessions, but they did not know that all participants would receive one high and one low dose. Blood pressure and mood were monitored throughout the sessions. Two monitors aided participants during each session, encouraging them to lie down, wear an eye mask, listen to music through headphones and direct their attention on their inner experience. If anxiety or confusion arose, the monitors provided reassurance to the participants. In addition to experiencing changes in visual perception, emotions and thinking, most participants reported experiences of psychological insight and often profound, deeply meaningful experiences of the interconnectedness of all people. The researchers assessed each participant's mood, attitude about life, behaviors and spirituality with questionnaires and structured interviews before the first session, seven hours after taking the psilocybin, five weeks after each session and six months after the second session. Immediately after the sessions, participants completed questionnaires assessing changes in visual, auditory and body perceptions; feelings of transcendence; changes in mood; and more. Structured clinical interviews, such as the Hamilton Depression Rating Scale and the Hamilton Anxiety Rating Scale, and patient questionnaires, like the Beck Depression Inventory and the State-Trait Anxiety Inventory, assessed depression and anxiety. Other questionnaires assessed quality of life, death acceptance, meaningful existence, optimism and spirituality -- generally defined as a search for the meaning of life and a connection to something bigger than one's self. To measure the changes in attitudes, moods and behavior over time, the researchers administered a questionnaire that assessed negative or positive changes in attitudes about life, mood and behavior. With regard to adverse effects, Griffiths says 15 percent of participants were nauseated or vomited, and one-third of participants experienced some psychological discomfort, such as anxiety or paranoia, after taking the higher dose. One-third of the participants had transient increases in blood pressure. A few participants reported headaches following the session. "Before beginning the study, it wasn't clear to me that this treatment would be helpful, since cancer patients may experience profound hopelessness in response to their diagnosis, which is often followed by multiple surgeries and prolonged chemotherapy," says Griffiths. "I could imagine that cancer patients would receive psilocybin, look into the existential void and come out even more fearful. However, the positive changes in attitudes, moods and behavior that we documented in healthy volunteers were replicated in cancer patients." Up to 40 percent of people with cancer suffer from a mood disorder, according to the National Comprehensive Cancer Network. Anticipating wide interest in the psilocybin research from scientists, clinicians and the public, the journal solicited 11 commentaries to be co-published with the study results written by luminaries in psychiatry, palliative care and drug regulation, including two past presidents of the American Psychiatric Association, a past president of the European College of Neuropsychopharmacology, the former deputy director of the U.S. Office of National Drug Control Policy, and the former head of the U.K. Medicines and Healthcare Products Regulatory Authority. In general, the commentaries were supportive of the research and of using these drugs in a clinical setting as tools for psychiatry. Additional authors included Matthew Johnson, Michael Carducci, Annie Umbricht, William Richards, Brian Richards, Mary Cosimano and Margaret Klinedinst, all of The Johns Hopkins University. The study was funded by grants from the Heffter Research Institute, the RiverStyx Foundation, William Linton, the Betsy Gordon Foundation, the McCormick family, the Fetzer Institute, George Goldsmith, Ekaterina Malievskaia and the National Institute on Drug Abuse (R01DA03889).


News Article | October 27, 2016
Site: www.eurekalert.org

A robotic arm and a virtual game were essential tools in a new study from researchers at Johns Hopkins Medicine. The study results suggest that while training doesn't change neurological repair in chronic stroke patients, it can indeed help such patients learn new motor skills and achieve more independence in their daily lives. A report on the work is published in the journal Neurorehabilitation and Neural Repair on Oct. 27. "What we found is that physical rehab is not going to change the weakness caused by damaged brain cells in chronic patients, but it is going to change how well they can perform certain tasks, which can have a huge impact on a patient's daily life," says Pablo Celnik, M.D., director of the Department of Physical Medicine and Rehabilitation at Johns Hopkins. Brain damage from strokes occurs when the blood supply to the brain is blocked (ischemic stroke) or a blood vessel feeding brain tissue ruptures (hemorrhagic stroke). Depending on the extent of the stroke, the damage can cause partial or total paralysis, affecting motor function, balance, speech, sensation and other physical activities. Chronic stroke patients are those whose physical impairments persist more than six months after the stroke. Rehabilitation specialists measure the damage using the Fugl-Meyer Assessment (FMA), which measures the neurological damage wrought by a stroke on a scale from zero to 66. For the new study, the investigators recruited 10 chronic stroke patients with FMA scores of ?50 out of 66 and categorized them as having "mild to moderate" functional deficits for the purposes of the study, and 10 other patients with FMA scores of All of the study participants were trained to control a simple video game using a using a robotic piece of equipment that held their dominant arm at 90 degrees from their bodies. This eliminated gravity as a burden for those whose arms were weakened by their strokes. The subjects were then taught to use the muscles around their elbow to move a cursor across a screen into small target windows. Participants' performance in the game was measured during training sessions and skill assessment trials. A pre-training skill assessment was conducted to get a baseline from which to measure improvement. Participants were asked to move the cursor through the windows in time with a metronome and completed nine blocks of 10 trials at various speeds -- 24, 30, 38, 45, 60, 80, 100, 110 and 120 beats per minute. The metronome prevented participants from slowing down to improve their accuracy, so the only way to show improvement was by becoming more skilled at the task. The next phase of the experiment had participants attend 30-minute training sessions for four consecutive days. They were asked to complete five blocks of 30 trials, all at their own pace, and were encouraged to improve their speed and accuracy in each consecutive block. Following the training sessions, participants' skill levels were tested again in another skill assessment. Results showed that while each group's skill level improved by the end of the training, those with greater motor impairment still demonstrated less skill in both the pre- and post-training assessments. All participants reached a plateau in their improvement around experimental days three and four. However, the study showed that there was considerable overlap between the post-training performance of the stroke patients and the pre-training performance of groups with less impairment. "When you look at the data, the post-training mild-to-moderate group is indistinguishable from the pre-training control group. And the same was true for post-training scores of those in the moderate-to-severe group and the mild-to-moderate group," says Robert Hardwick, Ph.D., postdoctoral fellow in the Department of Neurology at the Johns Hopkins University School of Medicine. "This is good news for patients because it means that even when there is little likelihood of further neurological recovery, it means I can still teach them new tasks through training," says Celnik. "What is important is to not create false expectations of neurological recovery, while at the same time being hopeful that patients can learn within the boundaries of their neurological deficit to improve their lives." According to the World Health Organization, 15 million people worldwide suffer a stroke each year. An estimated 5 million die, and another 5 million are left with lasting motor impairment. Celnik cautions that this study only included chronic stroke patients and that their future research plans include conducting similar studies in acute stroke patients -- those within three months of the stroke -- which could yield different results. "Maybe there is a different impact of training in the earlier stages of stroke damage," says Celnik. Other researchers involved in this study include Vikram A. Rajan and John W. Krakauer from The Johns Hopkins University, and Amy J. Bastian from The Johns Hopkins University and the Kennedy Krieger Institute. This study was funded by a Eunice Kennedy Shriver National Institute of Child Health and Human Development research project grant.


News Article | March 28, 2016
Site: www.materialstoday.com

The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, USA, has established a center of excellence to guide major advances in additive manufacturing (AM). The center will initially focus on significant technical challenges that are currently preventing more widespread adoption of additive manufacturing technologies in the Defense Department and also on topics of interest to the intelligence community. Other future initiatives will include printed microelectronics and bioprinting. ‘For many years, we have been at the forefront of advanced manufacturing technology,’ said Jim Schatz, who leads APL’s research and exploratory development department. ‘The investments we are making in additive manufacturing will place us among the leaders in this area nationally, and allow us to rapidly develop and deliver game-changing capabilities to our government sponsors.’ The lab plans to invest in additional powder bed fusion and hybrid additive-subtractive systems. The center will engage in the following activities: This story uses material from Johns Hopkins University Applied Physics Laboratory, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier.


News Article | September 17, 2016
Site: scienceblogs.com

Did you ever notice that Pluto doesn’t have much of a tail? No, not that Pluto! This Pluto: This has been known for a while. NASA noted this last year: New Horizons has discovered a region of cold, dense ionized gas tens of thousands of miles beyond Pluto — the planet’s atmosphere being stripped away by the solar wind and lost to space. Beginning an hour and half after closest approach, the Solar Wind Around Pluto (SWAP) instrument observed a cavity in the solar wind — the outflow of electrically charged particles from the Sun — between 48,000 miles (77,000 km) and 68,000 miles (109,000 km) downstream of Pluto. SWAP data revealed this cavity to be populated with nitrogen ions forming a “plasma tail” of undetermined structure and length extending behind the planet. Not long ago it was not known that Pluto had an atmosphere. But it does, and it is probably made from solid ice that makes up a good portion of the planet. When Pluto is nearer the Sun, this atmosphere burns off and forms an unimpressive tail. (Existentially impressive, but not fireworks impressive.) If Pluto were to come really close to the sun, like a typical comet, it would … well, it would essentially be a a comet. A pretty big one, at first. But then after several passes… Anyway, more recently, it has been discovered that Pluto also puts out X-rays, and if confirmed, this is interesting. The total number of X-rays that have been detected is very small. The existence of these X-rays is likely linked to the atmosphere. From NASA: Scientists using NASA’s Chandra X-ray Observatory have made the first detections of X-rays from Pluto. These observations offer new insight into the space environment surrounding the largest and best-known object in the solar system’s outermost regions. While NASA’s New Horizons spacecraft was speeding toward and beyond Pluto, Chandra was aimed several times on the dwarf planet and its moons, gathering data on Pluto that the missions could compare after the flyby. Each time Chandra pointed at Pluto – four times in all, from February 2014 through August 2015 – it detected low-energy X-rays from the small planet. Pluto is the largest object in the Kuiper Belt, a ring or belt containing a vast population of small bodies orbiting the Sun beyond Neptune. The Kuiper belt extends from the orbit of Neptune, at 30 times the distance of Earth from the Sun, to about 50 times the Earth-Sun distance. Pluto’s orbit ranges over the same span as the overall Kupier Belt. “We’ve just detected, for the first time, X-rays coming from an object in our Kuiper Belt, and learned that Pluto is interacting with the solar wind in an unexpected and energetic fashion,” said Carey Lisse, an astrophysicist at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, who led the Chandra observation team with APL colleague and New Horizons Co-Investigator Ralph McNutt. “We can expect other large Kuiper Belt objects to be doing the same.” The team recently published its findings online in the journal Icarus. The report details what Lisse says was a somewhat surprising detection given that Pluto – being cold, rocky and without a magnetic field – has no natural mechanism for emitting X-rays. But Lisse, having also led the team that made the first X-ray detections from a comet two decades ago, knew the interaction between the gases surrounding such planetary bodies and the solar wind – the constant streams of charged particles from the sun that speed throughout the solar system ­– can create X-rays. New Horizons scientists were particularly interested in learning more about the interaction between the gases in Pluto’s atmosphere and the solar wind. The spacecraft itself carries an instrument designed to measure that activity up-close – the aptly named Solar Wind Around Pluto (SWAP) – and scientists are using that data to craft a picture of Pluto that contains a very mild, close-in bowshock, where the solar wind first “meets” Pluto (similar to a shock wave that forms ahead of a supersonic aircraft) and a small wake or tail behind the planet. The immediate mystery is that Chandra’s readings on the brightness of the X-rays are much higher than expected from the solar wind interacting with Pluto’s atmosphere. “Before our observations, scientists thought it was highly unlikely that we’d detect X-rays from Pluto, causing a strong debate as to whether Chandra should observe it at all,” said co-author Scott Wolk, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. “Prior to Pluto, the most distant solar system body with detected X-ray emission was Saturn’s rings and disk.” The Chandra detection is especially surprising since New Horizons discovered Pluto’s atmosphere was much more stable than the rapidly escaping, “comet-like” atmosphere that many scientists expected before the spacecraft flew past in July 2015. In fact, New Horizons found that Pluto’s interaction with the solar wind is much more like the interaction of the solar wind with Mars, than with a comet. However, although Pluto is releasing enough gas from its atmosphere to make the observed X-rays, in simple models for the intensity of the solar wind at the distance of Pluto, there isn’t enough solar wind flowing directly at Pluto to make them. Lisse and his colleagues – who also include SWAP co-investigators David McComas from Princeton University and Heather Elliott from Southwest Research Institute – suggest several possibilities for the enhanced X-ray emission from Pluto. These include a much wider and longer tail of gases trailing Pluto than New Horizons detected using its SWAP instrument. Other possibilities are that interplanetary magnetic fields are focusing more particles than expected from the solar wind into the region around Pluto, or the low density of the solar wind in the outer solar system at the distance of Pluto could allow for the formation of a doughnut, or torus, of neutral gas centered around Pluto’s orbit. That the Chandra measurements don’t quite match up with New Horizons up-close observations is the benefit – and beauty – of an opportunity like the New Horizons flyby. “When you have a chance at a once in a lifetime flyby like New Horizons at Pluto, you want to point every piece of glass – every telescope on and around Earth – at the target,” McNutt says. “The measurements come together and give you a much more complete picture you couldn’t get at any other time, from anywhere else.” New Horizons has an opportunity to test these findings and shed even more light on this distant region – billions of miles from Earth – as part of its recently approved extended mission to survey the Kuiper Belt and encounter another smaller Kuiper Belt object, 2014 MU69, on Jan. 1, 2019. It is unlikely to be feasible to detect X-rays from MU69, but Chandra might detect X-rays from other larger and closer objects that New Horizons will observe as it flies through the Kuiper Belt towards MU69. The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, designed, built, and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.


GAITHERSBURG, Md., Feb. 14, 2017 (GLOBE NEWSWIRE) -- NexImmune, a biopharmaceutical company developing novel immuno-therapeutics based on the Artificial Immune (AIM™) nanotechnology platform, today announced the completion of the acquisition of the company by a consortium of private investors led by Dr. Sol J. Barer (Chairman, Teva; former Chairman and CEO, Celgene), Joshua Barer (Managing Director, Sunflower Life Sciences), William A. Hawkins (former Chairman and CEO, Medtronic), and other private investors. NexImmune’s AIM technology, originally developed by Dr. Jonathan Schneck and Dr. Mathias Oelke at the Johns Hopkins School of Medicine, was licensed from The Johns Hopkins University and is currently being applied in the field of immuno-oncology. Specifically, the AIM technology deploys a novel process that simultaneously enriches, expands and activates multiple antigen-specific T cells that can be directed against a variety of tumor-relevant antigens, including shared tumor-associated antigens or patient-specific neoantigens. “I am excited to support NexImmune’s advancement of this important immunotherapy-based technology,” stated Dr. Barer, the lead investor in the acquisition. “I believe that the AIM nanotechnology platform has the potential to deliver the next generation of immuno-oncology treatment, bringing new hope to patients suffering from many types of malignancies.” Core to the AIM technology is nanoparticle-based artificial Antigen Presenting Cells (aAPC) that bypass the role of natural dendritic cells, a target for immunosuppression by cancers, and directly engage endogenous T cells.  This approach is designed to combine robust anti-tumor effector T cells with the generation of immunologic memory.  By targeting T cells from the natural repertoire, which are not genetically manipulated, the potential for on-target,  off-tumor toxicity may be greatly reduced and safety enhanced. NexImmune also appointed a new Board of Directors, including: Dr. Spiegel, who currently serves as a director to several large and small biotechnology companies, and has held executive positions at industry leading pharmaceutical and biotechnology companies, said, “We look forward to advancing NexImmune’s AIM technology into early clinical development, and are excited about the potential advance it may represent in the rapidly expanding immuno-oncology field and in other immune-mediated disease areas.” About NexImmune  NexImmune is a biopharmaceutical company developing novel immuno-therapeutics based on the proprietary Artificial Immune (AIM™) nanotechnology platform. Central to the AIM technology are artificial Antigen Presenting Cell (aAPC) nanoparticles that can be engineered to orchestrate a highly targeted immune attack directed toward specific foreign substances or cell types in the body. In preclinical studies, aAPCs have demonstrated utility as therapeutic agents for both direct injection, and as an adoptively transferred cellular therapy. NexImmune is using the AIM technology platform to develop a pipeline of immunotherapeutic products to treat cancer. For more information visit: www.neximmune.com


News Article | March 1, 2017
Site: www.prweb.com

PrizeLogic proudly names Gary Shuman as EVP of Business Development, after joining PrizeLogic in January of 2015 as SVP, Managing Director, Chief Strategist of the PrizeLogic Mideast (Detroit) region. The appointment of an industry-leading subject matter expert to drive continued business development and innovation with current and new clients alike is one of a series of appointments over the last year implemented to drive company growth and the highest quality promotional services in the marketplace in 2017 and beyond. Shuman will assume his new role immediately, leading the full team of client-focused specialists. CEO Keith Simmons said. “We’re at a point in our growth trajectory where it was time to name a leader to fill the role of EVP of Business Development, and we’re thrilled to promote from within our organization by naming Gary to this new position.” Shuman will report into Simmons and remain based in the company’s Southfield, MI. headquarters. Shuman’s impressive resume includes most recently, running the PrizeLogic Mideast region team to double digit growth since joining the company in January, 2015. Immediately prior to joining PrizeLogic, he spent a year leading Business Development at Detroit Labs, a mobile technology development company. He spent over a decade in a series of senior level positions for ePrize (now HelloWorld), which included Managing Director of the East Region, CFO, VP Business Development, and SVP Fulfillment Services. Shuman earned his MBA from the University of Michigan – Stephen M. Ross School of Business, and graduated from The Johns Hopkins University with a BS in Chemical Engineering. “I consider myself very fortunate to have the opportunity lead this phenomenal business development team in an industry where I have so much experience and feel so much passion," said Shuman. “The continuous technology innovations, particularly in the mobile and social marketing space, are allowing PrizeLogic an increasing number of avenues to help our clients sell smarter and faster than ever before.“ With a team today of more than 175 professionals and having achieved yet another year of double digit revenue growth in 2016, PrizeLogic has been recognized within the industry as a clear leader. Among just 10 percent of ranked Inc. 5000 companies that made the list five years in a row, PrizeLogic appeared as one of only four Michigan-based companies in the advertising and marketing sector on the 35th annual ranking. As America’s largest independent promotions company, PrizeLogic was also recognized as one of Chief!Marketer’s “Promo Top Shops,” and one of the Crain’s Detroit top 200 fastest growing private companies. Founded in 2008, PrizeLogic is the most trusted digital partner for results-driven promotions. Millions of consumers have participated in more than 5,000 promotions launched by PrizeLogic since inception. PrizeLogic’s in-house experts provide services ranging from technology and security to legal and fulfillment, ensuring efficient and timely execution while maintaining creative excellence. The Company consistently innovates in order to keep brands relevant in an evolving digital world. PrizeLogic is proudly overseen by its original C-level management team in partnership with North Carolina-based partner Pamlico Capital, which is focused on aiding in the company’s continued business growth and development. PrizeLogic offices are located in Southfield, MI (HQ), Scottsdale, AZ, New York, NY, Chicago, IL, Los Angeles, CA and Atlanta, GA. For additional information, please visit http://www.prizelogic.com.


News Article | February 24, 2017
Site: www.eurekalert.org

PHILADELPHIA -- (Feb. 24, 2017) -- Scientists at The Wistar Institute and Inovio Pharmaceuticals, Inc. have devised a novel DNA vaccine approach through molecular design to improve the immune responses elicited against one of the most important cancer antigen targets. Study results were published in the journal Molecular Therapy. Cancer immunotherapy approaches, designed to harness the body's natural immune defenses to target and kill cancer cells, are showing great promise for cancer treatment and prevention. DNA vaccines can induce immunity through the delivery by an intramuscular injection of a sequence of synthetically designed DNA that contains the instructions for the immune cells in the body to become activated and target a specific antigen against which an immune response is sought. This approach has proven effective in generating strong immunity against some infectious diseases as well as clearing neoplasia in patients with tumors caused by viral infection. The recent identification of tumor-associated antigens, or proteins that are specifically expressed by tumor cells and not by normal cells, has sparked the development of DNA vaccine approaches against some of these promising targets. Unfortunately, most vaccines targeting tumor-associated antigens have had limited success so far in producing therapeutic effects against most cancers due to poor immunogenicity. Despite being specific for tumor cells, tumor-associated antigens typically trigger weak immune responses because they are recognized as self-antigens and the body has in place natural mechanisms of immune acceptance, or "tolerance", that prevent autoimmunity but also limit the efficacy of cancer vaccines. This is the case of Wilm's tumor gene 1 (WT1), a tumor antigen that is overexpressed in many types of cancer and likely plays a key role in driving tumor development. Vaccine approaches against WT1 so far have not appeared promising due to immune tolerance resulting in poor immune responses against cancers expressing WT1. Wistar scientists have developed a novel WT1 DNA vaccine using a strategically modified DNA sequence that tags the WT1 as foreign to the host immune system breaking tolerance in animal models. "This is an important time in the development of anti-cancer immune therapy approaches. This team has developed an approach that may play an important role in generating improved immunity to WT1 expressing cancers," said David B. Weiner, Ph.D., Executive Vice President and Director of the Vaccine Center at The Wistar Institute and the W.W. Smith Charitable Trust Professor in Cancer Research, and senior author of the study. "These immune responses represent a unique tool for potentially treating patients with multiple forms of cancer. Our vaccine also provides an opportunity to combine this approach with another immune therapy approach, checkpoint inhibitors, to maximize possible immune therapy impact on specific cancers." The team lead by Weiner has optimized the DNA vaccine using a synthetic DNA sequence for WT1 that, while maintaining a very high homology with the native sequence, contains new changed sequences that differ from native WT1 in an effort to render it more recognizable by the host immune system. This study shows that this novel vaccine design was able to induce WT1-specific, robust T cell responses as well as antibody production with no apparent toxicity both in mice and in non-human primates. The novel WT1 vaccine was superior to a more traditional native WT1 vaccine because it was able to break immune tolerance and induce long term immune memory. Importantly, the vaccine also stimulated a therapeutic anti-tumor response against leukemia in mice. This work was supported by grants from Inovio Pharmaceuticals, Inc. and the Basser Center for BRCA at the Abramson Cancer Center. Weiner is supported by the W.W. Smith Charitable Trust Professorship for Cancer Research. Co-authors of this study from The Wistar Institute include: Elizabeth K. Duperret and Jaemi Chu. Other co-authors include: Jewell N. Walters, Bernadette Ferraro, Kimberly A. Kraynyak, Jian Yan, Amir S. Khan and Niranjan Y. Sardesai from Inovio Pharmaceuticals, Inc., Ashley Saint-Fleur, and Hyam I. Levitsky from The Johns Hopkins University School of Medicine, Baltimore, Md. The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.


News Article | March 3, 2017
Site: www.prweb.com

Two experts in Black politics will speak at Hood College next week to close out the College’s Black History Month events. Elmer Dixon, a founder of a Black Panther Party chapter, and Lester Spence, Ph.D., associate professor of political science and Africana studies at The Johns Hopkins University, will give their talks March 7 and 8, respectively. Dixon will give his talk, “The Legacy of the Black Panther Party,” on March 7 at 7 p.m. in the Whitaker Campus Center Commons. He will talk about his personal experiences as a founding member of the Seattle Chapter of the Black Panther Party, and he will explore the many ways the party’s programs and philosophy remain relevant today. In 1968, Dixon and his brother, Aaron, co-founded the Seattle Chapter of the Black Panther Party. Dixon served as the chapter’s field marshal and as the breakfast program coordinator. He maintained the chapter until 1976 and many of its programs well into the 1980s. Today, he works as a diversity consultant, providing training and consultation in the areas of multi-cultural communication, team building and conflict management. For more information on Dixon’s talk, contact Aaron Angello at angello(at)hood(dot)edu or 301-696-3211. Spence will give his talk, “Mo(u)rning in America,” on March 8 at 7 p.m. in the Marx Center followed by a book signing. He will grapple with the profound impact of the 2016 elections on American Democracy and the persistent entrenched racial inequality that existed before and continues after the election of Donald Trump. His research spans a variety of topics from American political institutions, urban politics, race, and Black political empowerment to the role of media, hip hop, and inequality in Black communities. His books, “Stare in the Darkness: The Limits of Hip Hop and Black Politics” and “Knocking the Hustle: Against the Neoliberal Turn in Black Politics” are described by critics as analytically profound. His talk is co-sponsored by the African American Studies program and the Department of Political Science and is supported by the Office of the Provost. For more information on Spence’s talk, contact Hoda Zaki at hzaki(at)hood(dot)edu or 301-696-3697.

Loading The Johns Hopkins University collaborators
Loading The Johns Hopkins University collaborators