Time filter

Source Type

Baltimore Highlands, MD, United States

Foy B.D.,Colorado State University | Kobylinski K.C.,Colorado State University | Silva I.M.D.,Colorado State University | Rasgon J.L.,Johns Hopkins University | And 2 more authors.
Trends in Parasitology | Year: 2011

Systemic endectocidal drugs, used to control nematodes in humans and other vertebrates, can be toxic to Anopheles spp. mosquitoes when they take a blood meal from a host that has recently received one of these drugs. Recent laboratory and field studies have highlighted the potential of ivermectin to control malaria parasite transmission if this drug is distributed strategically and more often. There are important theoretical benefits to this strategy, as well as caveats. A better understanding of drug effects against vectors and malaria ecologies are needed. In the near future, ivermectin and other endectocides could serve as potent and novel malaria transmission control tools that are directly linked to the control of neglected tropical diseases in the same communities. © 2011 Elsevier Ltd.

Bosch J.,University of Washington | Bosch J.,The Johns Hopkins Malaria Research Institute | Paige M.H.,University of Washington | Vaidya A.B.,Drexel University | And 2 more authors.
Journal of Structural Biology | Year: 2012

The glideosome associated protein GAP50 is an essential protein in apicomplexan parasites such as Plasmodium, Toxoplasma and Cryptosporidium, several species of which are important human pathogens. The 44.6kDa protein is part of a multi-protein complex known as the invasion machinery or glideosome, which is required for cell invasion and substrate gliding motility empowered by an actin-myosin motor. GAP50 is anchored through its C-terminal transmembrane helix into the inner membrane complex and interacts via a short six residue C-terminal tail with other proteins of the invasion machinery in the pellicle of the parasite. In this paper we describe the 1.7å resolution crystal structure of the soluble GAP50 domain from the malaria parasite Plasmodium falciparum. The structure shows an αßßα fold with overall similarity to purple acid phosphatases with, however, little homology regarding the nature of the residues in the active site region of the latter enzyme. While purple acid phosphatases contain a phosphate bridged binuclear Fe-site coordinated by seven side chains with the Fe-ions 3.2å apart, GAP50 in our crystals contains two cobalt ions each with one protein ligand and a distance between the Co 2+ ions of 18å. © 2012 Elsevier Inc.

Hughes G.L.,Pennsylvania State University | Vega-Rodriguez J.,Johns Hopkins University | Vega-Rodriguez J.,The Johns Hopkins Malaria Research Institute | Xue P.,Johns Hopkins University | Rasgon J.L.,Pennsylvania State University
Applied and Environmental Microbiology | Year: 2012

Wolbachia, a common bacterial endosymbiont of insects, has been shown to protect its hosts against a wide range of pathogens. However, not all strains exert a protective effect on their host. Here we assess the effects of two divergent Wolbachia strains, wAlbB from Aedes albopictus and wMelPop from Drosophila melanogaster, on the vector competence of Anopheles gambiae challenged with Plasmodium berghei. We show that the wAlbB strain significantly increases P. berghei oocyst levels in the mosquito midgut while wMelPop modestly suppresses oocyst levels. The wAlbB strain is avirulent to mosquitoes while wMelPop is moderately virulent to mosquitoes pre-blood meal and highly virulent after mosquitoes have fed on mice. These various effects on P. berghei levels suggest that Wolbachia strains differ in their interactions with the host and/or pathogen, and these differences could be used to dissect the molecular mechanisms that cause interference of pathogen development in mosquitoes. © 2012, American Society for Microbiology.

Zhang X.,Johns Hopkins University | Norris D.E.,Johns Hopkins University | Norris D.E.,The Johns Hopkins Malaria Research Institute | Rasgon J.L.,Johns Hopkins University | Rasgon J.L.,The Johns Hopkins Malaria Research Institute
FEMS Microbiology Ecology | Year: 2011

The lone star tick Amblyomma americanum is host to a wide diversity of endosymbiotic bacteria. We identified a novel Wolbachia symbiont infecting A. americanum. Multilocus sequence typing phylogenetically placed the endosymbiont in the increasingly diverse F supergroup. We assayed a total of 1031 ticks (119 females, 78 males and 834 nymphs in 89 pools) from 16 Maryland populations for infection. Infection frequencies in the natural populations were approximately 5% in females and o2% (minimum infection rate) in nymphs; infection was not detected in males. Infected populations were only observed in southern Maryland, suggesting the possibility that Wolbachia is currently invading Maryland A. americanum populations. Because F supergroup Wolbachia have been detected previously in filarial nematodes, tick samples were assayed for nematodes by PCR. Filarial nematodes were detected in 70% and 9% of Wolbachia-positive and Wolbachia-negative tick samples, respectively. While nematodes were more common in Wolbachia-positive tick samples, the lack of a strict infection concordance (Wolbachia-positive, nematode-negative and Wolbachia-negative, nematode-positive ticks) suggests that Wolbachia prevalence in ticks is not due to nematode infection. Supporting this hypothesis, phylogenetic analysis indicated that the nematodes were likely a novel species within the genus Acanthocheilonema, which has been previously shown to be Wolbachia-free. © 2011 Federation of European Microbiological Societies.

Zhang X.,Johns Hopkins University | Ren X.,Johns Hopkins University | Ren X.,The Johns Hopkins Malaria Research Institute | Norris D.E.,Johns Hopkins University | And 2 more authors.
Ticks and Tick-borne Diseases | Year: 2012

Amblyomma americanum (the lone star tick) is a broadly distributed tick that transmits multiple pathogens of humans and domestic animals. 'Candidatus Rickettsia amblyommii' is a spotted-fever group rickettsial species that is potentially associated with human disease. In 2008 and 2009, we assayed over 500 unfed adult ticks from 19 Maryland populations for the presence of 'Candidatus R. amblyommii'. Infection frequencies ranged from 33% to 100%, with an average infection rate of 60% in 2008 and 69% in 2009. Infection frequencies did not differ statistically between sexes. To develop a system in which to study 'Candidatus R. amblyommii' in the laboratory, we used a cell line developed from Anopheles gambiae mosquitoes (Sua5B) to isolate and culture 'Candidatus R. amblyommii' from field-collected A. americanum ticks from 2 localities in Maryland. After infection, Sua5B cells were infected for more than 40 passages. Infection was confirmed by Rickettsia-specific PCR, gene sequencing, and Rickettsia-specific fluorescence in situ hybridization (FISH). These data show that 'Candidatus R. amblyommii' is widespread in Maryland A. americanum populations and that Sua5B cells are a useful tool for culturing Rickettsia infections from wild ticks. © 2011 Elsevier GmbH.

Discover hidden collaborations