Entity

Time filter

Source Type

New Haven, CT, United States

Green B.G.,The John B Pierce Laboratory | Green B.G.,Yale University
Chemical Senses | Year: 2012

An important function of the chemical senses is to warn against dangerous biological and chemical agents in the environment. The discovery in recent years of "taste" receptor cells outside the oral cavity that appear to have protective functions has raised new questions about the nature and scope of the chemical senses in general and of chemesthesis in particular. The present paper briefly reviews these findings within the context of what is currently known about the body's chemically sensitive protective mechanisms, including nonsensory processes that help to expel or neutralize threatening agents once they have been encountered. It is proposed that this array of defense mechanisms constitutes a "chemofensor complex" in which chemesthesis is the most ubiquitous, functionally diverse, and interactive chemosensory component. © The Author 2011. Published by Oxford University Press. All rights reserved. Source


Small D.M.,The John B Pierce Laboratory | Small D.M.,Yale University
Physiology and Behavior | Year: 2012

Flavor is perhaps the most multi-modal of all of our sensory experiences. Here flavor is defined as a perception that includes gustatory, oral-somatosensory, and retronasal olfactory signals that arise from the mouth as foods and beverages are consumed. Although the sights, sounds and smells of foods that occur just before, or in the absence of eating, can impact flavor perception, it is argued that these sensory signals exert their influence by creating expectations based upon prior associations. The primary aim of the paper is to review anatomical and neurophysiological data towards an understanding of how the core sensory signals combine in the central nervous system of humans. Based upon the extant literature it is proposed that taste, oral-somatosensory and olfactory inputs are first integrated in the anterior ventral insula. The core flavor percept is then conveyed to upstream regions in the brainstem and thalamus, as well as downstream regions in the amygdala, orbitofrontal cortex and anterior cingulate cortex to produce the rich flavorful experiences that guide our feeding behavior. © 2012 Elsevier Inc. Source


Small D.M.,The John B Pierce Laboratory
Brain structure & function | Year: 2010

The sense of taste exists so that organisms can detect potential nutrients and toxins. Despite the fact that this ability is of critical importance to all species there appear to be significant interspecies differences in gustatory organization. For example, monkeys and humans lack a pontine taste relay, which is a critical relay underlying taste and feeding behavior in rodents. In addition, and of particular relevance to this special issue, the primary taste cortex appears to be located further caudally in the insular cortex in humans compared to in monkeys. The primary aim of this paper is to review the evidence that supports this possibility. It is also suggested that one parsimonious explanation for this apparent interspecies differences is that if, as Craig suggests, the far anterior insular cortex is newly evolved and unique to humans, then the human taste cortex may only appear to be located further caudally because it is no longer the anterior-most section of insular cortex. In addition to discussing the location of taste representation in human insular cortex, evidence is presented to support the possibility that this region is better conceptualized as an integrated oral sensory region that plays role in feeding behavior, rather than as unimodal sensory cortex. Source


Small D.M.,The John B Pierce Laboratory | Small D.M.,Yale University
Brain Structure and Function | Year: 2010

The sense of taste exists so that organisms can detect potential nutrients and toxins. Despite the fact that this ability is of critical importance to all species there appear to be significant interspecies differences in gustatory organization. For example, monkeys and humans lack a pontine taste relay, which is a critical relay underlying taste and feeding behavior in rodents. In addition, and of particular relevance to this special issue, the primary taste cortex appears to be located further caudally in the insular cortex in humans compared to in monkeys. The primary aim of this paper is to review the evidence that supports this possibility. It is also suggested that one parsimonious explanation for this apparent interspecies differences is that if, as Craig suggests, the far anterior insular cortex is newly evolved and unique to humans, then the human taste cortex may only appear to be located further caudally because it is no longer the anterior-most section of insular cortex. In addition to discussing the location of taste representation in human insular cortex, evidence is presented to support the possibility that this region is better conceptualized as an integrated oral sensory region that plays role in feeding behavior, rather than as unimodal sensory cortex. © 2010 Springer-Verlag. Source


Green B.G.,The John B Pierce Laboratory | Green B.G.,Yale University | Nachtigal D.,The John B Pierce Laboratory
Physiology and Behavior | Year: 2012

Touch and temperature are recognized as important factors in food perception, but much remains to be learned about how they contribute to the perception of flavor. The present paper describes human psychophysical studies that investigated two recently discovered effects of temperature and mechanical stimulation on taste: (1) enhancement of the savory taste of MSG by active tongue and mouth movements, and (2) modulation of the rate of adaptation to sucrose sweetness by temperature. The first study provides evidence that for MSG but not other taste stimuli, movement of the tongue against the palate enhances taste intensity both by increasing spatial summation between opposing gustatory surfaces and by a hypothesized interaction with touch/kinesthesis. The second study shows that the rate of adaptation to sucrose sweetness (but not quinine bitterness) on the tongue tip is strongly influenced by temperature. It is hypothesized that warming slows adaptation to sucrose by increasing the sensitivity of an early stage of taste transduction. Together these results demonstrate that models of flavor perception must include somatosensory stimuli both as components of flavor perception and as modulators of taste. © 2012 Elsevier Inc. Source

Discover hidden collaborations