Time filter

Source Type

Jurek Z.,German Electron Synchrotron | Jurek Z.,The Hamburg Center for Ultrafast Imaging | Son S.-K.,German Electron Synchrotron | Son S.-K.,The Hamburg Center for Ultrafast Imaging | And 6 more authors.
Journal of Applied Crystallography

Rapid development of X-ray free-electron laser (XFEL) science has taken place in recent years owing to the consecutive launch of large-scale XFEL instruments around the world. Research areas such as warm dense matter physics and coherent X-ray imaging take advantage of the unprecedentedly high intensities of XFELs. A single XFEL pulse can induce very complex dynamics within matter initiated by core-hole photoionization. Owing to this complexity, theoretical modeling revealing details of the excitation and relaxation of irradiated matter is important for the correct interpretation of the measurements and for proposing new experiments. XMDYN is a computer simulation tool developed for modeling dynamics of matter induced by high-intensity X-rays. It utilizes atomic data calculated by the ab initio XATOM toolkit. Here these tools are discussed in detail. © 2016 International Union of Crystallography. Source

Saeidian S.,Institute for Advanced Studies in Basic Sciences | Melezhik V.S.,Joint Institute for Nuclear Research | Schmelcher P.,University of Hamburg | Schmelcher P.,The Hamburg Center for Ultrafast Imaging
Journal of Physics B: Atomic, Molecular and Optical Physics

We develop and analyze a theoretical model to study p-wave Feshbach resonances of identical fermions in atomic waveguides by extending the two-channel model of Lange et al (2009 Phys. Rev. A 79 013622) and Saeidian et al (2012 Phys. Rev. A 86 062713). The experimentally known parameters of Feshbach resonances in free space are used as input of the model. We calculate the shifts and widths of p-wave magnetic Feshbach resonance of 40K atoms emerging in harmonic waveguides as p-wave confinement induced resonance (CIR). Particularly, we show a possibility to control the width and shift of the p-wave CIR by the trap frequency and the applied magnetic field which could be used in corresponding experiments. Our analysis also demonstrates the importance of the inclusion of the effective range in the computational schemes for the description of the p-wave CIRs contrary to the case of s-wave CIRs where the influence of this term is negligible. © 2015 IOP Publishing Ltd Printed in the UK. Source

Son S.-K.,German Electron Synchrotron | Son S.-K.,The Hamburg Center for Ultrafast Imaging | Thiele R.,German Electron Synchrotron | Thiele R.,The Hamburg Center for Ultrafast Imaging | And 8 more authors.
Physical Review X

The charged environment within a dense plasma leads to the phenomenon of ionization-potential depression (IPD) for ions embedded in the plasma. Accurate predictions of the IPD effect are of crucial importance for modeling atomic processes occurring within dense plasmas. Several theoretical models have been developed to describe the IPD effect, with frequently discrepant predictions. Only recently, first experiments on IPD in Al plasma have been performed with an x-ray free-electron laser, where their results were found to be in disagreement with the widely used IPD model by Stewart and Pyatt. Another experiment on Al, at the Orion laser, showed disagreement with the model by Ecker and Kröll. This controversy shows a strong need for a rigorous and consistent theoretical approach to calculate the IPD effect. Here, we propose such an approach: a two-step Hartree-Fock-Slater model. With this parameter-free model, we can accurately and efficiently describe the experimental Al data and validate the accuracy of standard IPD models. Our model can be a useful tool for calculating atomic properties within dense plasmas with wide-ranging applications to studies on warm dense matter, shock experiments, planetary science, inertial confinement fusion, and nonequilibrium plasmas created with x-ray free-electron lasers. Source

Han P.,Max Planck Institute for Solid State Research | Bester G.,Max Planck Institute for Solid State Research | Bester G.,University of Hamburg | Bester G.,The Hamburg Center for Ultrafast Imaging
Physical Review B - Condensed Matter and Materials Physics

The three-dimensional confinement characterizing a nanocrystal (NC) leads to the formation of discrete electronic states. The energy gap between these states in colloidal NCs can be up to an order of magnitude larger than the vibrational energy of the host material. This large energetic mismatch (not given in self-assembled quantum dots) leads to the expectation that an electron occupying an excited state would be unable to release its energy to vibrations and a "phonon bottleneck" should finally be observed. Using large-scale ab initio calculations and a time-dependent formalism, we show that on the contrary, a phonon bottleneck can be observed only in a narrow window of diameters for CdSe and InAs NCs and should not occur at all in Si NCs. Two relaxation pathways enable fast carrier relaxation. For smaller structures (below 20-Å radius), the coupling strength and energy detuning are such that quantum mechanics allows us to effectively bridge electronic gaps much larger than the vibronic energy. For larger structures, the coupling to passivant modes, although very weak, leads to an efficient picosecond carrier relaxation. This work provides insight into the nature of carrier relaxation in colloidal nanostructures and highlights that defects, of any kind, are not necessary to explain the observed fast carrier relaxation. © 2015 American Physical Society. Source

Achilleos V.,National and Kapodistrian University of Athens | Frantzeskakis D.J.,National and Kapodistrian University of Athens | Kevrekidis P.G.,University of Massachusetts Amherst | Schmelcher P.,University of Hamburg | And 2 more authors.
Romanian Reports in Physics

We present a unified description of different types of matter-wave solitons that can emerge in quasi one-dimensional spin-orbit coupled (SOC) Bose-Einstein condensates (BECs). This description relies on the reduction of the original two-component Gross-Pitaevskii SOC-BEC model to a single nonlinear Schr¨odinger equation, via a multiscale expansion method. This way, we find approximate bright and dark soliton solutions, for attractive and repulsive interatomic interactions respectively, for different regimes of the SOC interactions. Beyond this, our approach also reveals “negative mass” regimes, where corresponding “negative mass” bright or dark solitons can exist for repulsive or attractive interactions, respectively. Such a unique opportunity stems from the structure of the excitation spectrum of the SOC-BEC. Numerical results are found to be in excellent agreement with our analytical predictions. © 2015, Editura Academiei Romane. All rights reserved. Source

Discover hidden collaborations