Time filter

Source Type

Jin X.,The General Hospital of Daqing Oil Field | Meng F.,Harbin Medical University
OncoTargets and Therapy | Year: 2016

Objectives: Astrocyte elevated gene-1 (AEG-1) plays a critical role in tumor progression and chemoresistance. The aim of the present study was to investigate the protein expression of AEG-1 in patients with epithelial ovarian cancer (EOC) who underwent debulking surgery after neoadjuvant chemotherapy (NAC). Materials and methods: The protein expression of AEG-1 was analyzed using immuno- histochemistry in 162 patients with EOC. The relationship between AEG-1 expression and chemotherapy resistance was assessed using univariate and multivariate logistic regression analyses with covariate adjustments. Results: High AEG-1 expression was significantly associated with the International Federation of Gynecology and Obstetrics stage, age, serum cancer antigen-125 concentration, histological grade, the presence of residual tumor after the interval debulking surgery, and lymph node metastasis. Furthermore, AEG-1 expression was significantly higher in NAC-resistant disease than in NAC-sensitive disease (P<0.05). Multivariate analyses indicated that elevated AEG-1 expression predicted poor survival. Conclusion: Our findings indicate that AEG-1 may be a potential new biomarker for predicting chemoresistance and poor prognoses in patients with EOC. © 2016 Wang et al. Source

Zhao J.,Harbin Medical University | Tang H.,The General Hospital of Daqing Oil Field | Zhao H.,Harbin Medical University | Che W.,Harbin Medical University | And 2 more authors.
Tumor Biology | Year: 2015

Glioblastoma multiforme (GBM) is one of the most aggressive tumors in the central nervous system. SEMA6A, the first identified class 6 semaphorin, is contributed to regulate vascular development and adult angiogenesis. However, the function of SEMA6A in GBM is still undefined. In the present study, we investigated the expression of SEMA6A protein in 200 GBM tissues using immunohistochemistry (IHC). SEMA6A expression was associated with time to progression (P = 0.001) and mean tumor diameter (P = 0.038). Kaplan–Meier analysis revealed that patients expressing high SEMA6A protein levels had a significantly longer overall survival (OS, P = 0.013) and progression-free survival (PFS, P = 0.005) compared to those with low SEMA6A expression level. Cox multivariate regression analysis confirmed that low SEMA6A expression was an independent unfavorable prognostic factors for PFS (HR, 1.896; 95 % CI, 1.147–2.768; P = 0.009) and OS (HR, 1.712; 95 % CI, 1.011–2.657; P = 0.012). Furthermore, in vitro experiments showed that SEMA6A could inhibit proliferation, migration, and invasion in different glioma cell lines. In conclusion, our findings indicated that SEMA6A may be a potential prognostic biomarker in the treatment of GBM. © 2015, International Society of Oncology and BioMarkers (ISOBM). Source

Tang H.,Harbin Medical University | Zhao J.,Harbin Medical University | Zhang L.,The General Hospital of Daqing Oil Field | Zhao J.,The General Hospital of Daqing Oil Field | And 2 more authors.
Cellular and Molecular Neurobiology | Year: 2015

Glioblastoma (GBM) is the most common and most aggressive central nervous system tumor in adults. Due to GBM cell invasiveness and resistance to chemotherapy, current medical interventions are not satisfactory, and the prognosis for GBM is poor. It is necessary to investigate the underlying mechanism of GBM metastasis and drug resistance so that more effective treatments can be developed for GBM patients. sushi repeat-containing protein, X-linked 2 (SRPX2) is a prognostic biomarker in many different cancer cell lines and is associated with poor prognosis in cancer patients. SRPX2 overexpression promotes interactions between tumor and endothelial cells, leading to tumor progression and metastasis. We hypothesize that SRPX2 also contributes to GBM chemotherapy resistance and metastasis. Our results revealed that GBM tumor samples from 42 patients expressed higher levels of SRPX2 than the control normal brain tissue samples. High-SRPX2 expression levels are correlated with poor prognosis in those patients, as well as resistance to temozolomide in cultured GBM cells. Up-regulating SRPX2 expression in cultured GBM cell lines facilitated invasiveness and migration of GBM cells, while down-regulating SRPX2 through RNA interference was inhibitory. These results suggest that SRPX2 plays an important role in GBM metastasis. Epithelial to mesenchymal transition (EMT) is one of the processes that facilitate GBM metastasis and resistance to chemotherapy. EMT marker expression was decreased in SRPX2 down-regulated GBM cells, and MAPK signaling pathway marker expression was also decreased when SRPX2 is knocked down in GBM-cultured cells. Blocking the MAPK signaling pathway inhibited GBM metastasis but did not inhibit cell invasion and migration in SRPX2 down-regulated cells. Our results indicate that SRPX2 facilitates GBM metastasis by enhancing the EMT process via the MAPK signaling pathway. © 2015 Springer Science+Business Media New York Source

Yao H.,Harbin Medical University | Han J.,The General Hospital of Daqing Oil Field | Wang J.,Qingdao Fuwai Hospital Cams and Pumc | Wang L.,Harbin Medical University | And 4 more authors.
Cellular and Molecular Biology | Year: 2015

We used RT-PCR, nested PCR to acquire the partial 5'- race fragment of rabbit HGF cDNA and the partial 3'- race fragment of rabbit HGF cDNA. Then, we used recombination PCR to acquire rabbit HGF successfully. Homology analysis was conducted among the sequence of RABHGF and known human and rat HGF by DNAStar. It was proved that high level of homology existed among the sequences of those three HGF genes. We used the acquired gene of RABHGF to construct its recombinant eukaryotic expression vector pcDNA3.1(+)-RABHGF (pRABHGF). The identification of the eukaryotic expression vector pRABHGF by PCR, restriction enzyme and sequencing analysis showed that rabbit HGF gene was correctly inserted into the vector. pRABHGF and pcDNA3.1(+) as controls were transfected into COS-7 cells by lipofectamine. It takes 24h-36h after transfection to detect the expression of RABHGF protein by indirect immunofluorescence assay (IFA). The proliferation of cos-7 cells were evaluated by MTT assay. The result displayed positive effect of RABHGF protein on the proliferation of COS-7 cells. This study lays the foundation for a new gene therapy method for ischemic heart disease. © 2015. All rights reserved. Source

Discover hidden collaborations