Time filter

Source Type

PubMed | The Third Affiliated Hospital of Zunyi Medical College and The First Affiliated Hospital of Zunyi Medical College
Type: | Journal: Journal of molecular neuroscience : MN | Year: 2016

Complement-mediated inflammation plays a vital role in intracerebral hemorrhage (ICH), implicating pro-inflammatory factor interleukin-1beta (IL-1) secretion. Brain samples and contralateral hemiencephalon were all collected and detected by Western blot. NLRP3 expression was located by dual immunofluorescence staining at 1, 3, and 5days post-ICH. Brain water content was examined post-ICH. The neural deficit scores were evaluated by observers blindly. ILs were detected by ELISA. SiRNAs targeting NLRP3 (siNLRP3), siASC, and siControl were injected to inhibit NLRP3 function. To test the complement activation via Nod-like receptor (NLR) family pyrin domain-containing 3 (NLRP3), normal rabbit complement (NRC) was injected with lipopolysaccharide (LPS) to facilitate the complement function. As a result, complement 3a (C3a) and complement 5a (C5a) were upregulated during the ICH-induced neuroinflammation, and ablation of C3 attenuates ICH-induced IL-1 release. Though the LPS rescues the neuroinflammation in the ICH model, C3 deficiency attenuates the LPS-induced inflammatory effect. The NLRP3 inflammasome was activated after ICH and was located in the microglial cell of the mouse brain, which exhibits a time-dependent manner. However, the number of NLRP3/Iba-1 dual-labeled cells in the C3

PubMed | Zunyi Medical College and the First Affiliated Hospital of Zunyi Medical College
Type: | Journal: Journal of experimental & clinical cancer research : CR | Year: 2016

Grb2-associated binder 2 (Gab2), a scaffolding adaptor protein, has recently been implicated in cancer progression. However, the role of Gab2 in the progression and metastasis of colorectal cancer (CRC) remains unclear.Gab2 expression was assessed in CRC patient specimens as well as in CRC cell lines. Recombinant lentivirus vector containing Gab2 gene and its small interfering RNAs were constructed and introduced into CRC cells. Cell migration and invasion ability were evaluated by transwell assays in vitro, and in vivo metastasis was performed on nude mice model. Moreover, the expression of Gab2 and epithelial-to-mesenchymal transition (EMT)-associated proteins (E-cadherin and vimentin) were assessed by western blot and qRT-PCR in CRC cells to evaluate the correlation between Gab2 and EMT. Finally, we evaluated the impact of Gab2 on the activation of its downstream signaling effectors, and furthermore the effects of these pathways on Gab2 induced-EMT were also detected.We confirmed that increased Gab2 expression correlated with higher tumor node metastasis stage and highly invasive CRC cell lines. Ectopic expression of Gab2 promoted metastasis of CRC cells, whereas silencing of Gab2 resulted in inhibited metastasis both in vitro and in vivo. Overexpression of Gab2 in CRC cells induced EMT, whereas knockdown of Gab2 had the opposite effect. Furthermore, upregulation of Gab2 expression obviously stimulated the activation of extracellular signal-regulated kinase-1/2 (ERK1/2), and increased the expression of matrix metalloproteinase-7 (MMP7) and matrix metalloproteinase-9 (MMP9) in CRC cells. Conversely, downregulation of Gab2 expression significantly decreased the activation of ERK1/2, and inhibited MMP7 and MMP9 expression. U0126, an inhibitor of mitogen-activated protein kinase (MEK), can reverse the effects of Gab2 on EMT.Our work highlights that Gab2 induces EMT through the MEK/ERK/MMP pathway, which in turn promotes intestinal tumor metastasis.

PubMed | Chongqing Medical University and The First Affiliated Hospital of Zunyi Medical College
Type: | Journal: Immunology letters | Year: 2017

Autophagic activation mediated inflammation contributes to brain injury of intracerebral hemorrhage (ICH). MiRNAs play a key role in inflammation, which negatively and posttranscriptionally regulate gene expression and function. Modulating the mTOR signal, a central regulator of autophagy, could be of great significance for ICH. However, the specific of miRNA is unknown. In the current study, we detected the miRNA-144 expression, autophagic activity and inflammation of microglia in ICH. We also knocked down endogenous miRNA-144 to regulate autophagy and inflammation in ICH. In addition, we assessed the neurological damge in ICH mice. We found that ICH promoted miRNA-144 expression but downregulated mTOR expression. In addition, upregulation of mTOR attenuated microglial autophagy and inflammation in ICH. Furthermore, downregulation of miRNA-144 also inhibited inflammation, brain edema and improved neurological functions in ICH mice. Taken together, our findings suggested that miRNA-144 was a crucial regulator of autophagy via regulation of mTOR, and represented a promising therapeutical strategy for ICH.

PubMed | Chongqing Medical University and The First Affiliated Hospital of Zunyi Medical College
Type: | Journal: Immunology letters | Year: 2016

Microglia mediated inflammation contributes to intracerebral hemorrhage (ICH) induced secondary injury. Activated microglia has dual functions as pro-inflammatory (M1) and anti-inflammatory (M2) factors in brain injury and repair. MiR-124 is a potent anti-inflammatory agent which affects microglia after brain injury. However, the potential of modulating the M1/M2 polarization of microglia after ICH has not been reported. In this experiment, we detected the effect of miR-124 on the M1/M2 polarization state. In addition, the ability miR-124 to subsequently impacted neurological deficit and cerebral water content of ICH mice were studied. Furthermore, the relationship between miR-124 and C/EBP- target was detected. We found that miR-124 significantly increased in M2-polarized microglia. Transduction of miR-124 mimics decreased proinflammatory cytokine levels. A coculture model of microglia and neuron indicated that M2-polarized microglia protected neuron damage. Furthermore, miR-124 banded to the 3-untranslated region of C/EBP- and downregulated its protein levels. In vivo, infusion of miR-124 decreased brain levels of C/EBP- and significantly reduced brain injury in ICH mice. Thus, miR-124 ameliorated ICH-induced inflammatory injury by modulating microglia polarization toward the M2 phenotype via C/EBP-. MiR-124 regulatory mechanisms also might represent new therapeutic strategy in ICH.

PubMed | Chongqing Medical University and The First Affiliated Hospital of Zunyi Medical College
Type: | Journal: Neuroscience | Year: 2016

Bexarotene has been proved to have neuroprotective effects in many animal models of neurological diseases. However, its neuroprotection in traumatic brain injury (TBI) is still unknown. This study aims to explore the neuroprotective effects of bexarotene on TBI and its possible mechanism. Controlled cortical impact (CCI) model was used to simulate TBI in C57BL/6 mice as well as APOE gene knockout (APOE-KO) mice. After CCI, mice were daily dosed with bexarotene or vehicle solution intraperitoneally. The motor function, learning and memory, inflammatory factors, microglia amount, apoptosis condition around injury site and main side-effects were all measured. The results showed that, after CCI, bexarotene treatment markedly improved the motor function and spatial memory in C57BL/6 compare to APOE-KO mice which showed no improvement. The inflammatory cytokines, microglia amount, cell apoptosis rate, and protein of cleaved caspase-3 around the injury site were markedly upregulated after TBI in both C57BL/6 and APOE-KO mice, and all these upregulation were significantly mitigated by bexarotene treatment in C57BL/6 mice, but not in APOE-KO mice. No side-effects were detected after consecutive administration. Taken together, bexarotene inhibits the inflammatory response as well as cell apoptosis and improves the neurological function of mice after TBI partially through apolipoprotein E. This may make it a promising candidate for the therapeutic treatment after TBI.

PubMed | Chongqing Medical University and The First Affiliated Hospital of Zunyi Medical College
Type: | Journal: Molecular immunology | Year: 2016

Microglial activation is an important contributor to neuroinflammation in intracerebral haemorrhage (ICH). IL-17A has been demonstrated to be involved in neuroinflammatory diseases such as multiple sclerosis. However, the exact mechanism of IL-17A mediated microglial activation in ICH has not been well identified. The purpose of this experiment is to investigate the role of IL-17A in ICH induced microglial activation and neuroinflammation. ICH mice were made by injection of autologous blood model. IL-17A expression and inflammatory factors in perihematomal region, and neurological function of mice were examined after ICH. In addition, IL-17A-neutralizing antibody was utilized to potentially prevent microglial activation and neuroinflammation in ICH mice. The expression of IL-17A, inflammatory factors and microglial activation in perihematomal region were significantly increased, and neurological function of mice was impaired after ICH. In addition, IL-17A Ab prevented ICH-induced cytokine expression, including TNF-, IL-1 and IL-6, and downstream signaling molecules, including MyD88, TRIF, IB, and NF-Bp65 expression, and attenuated microglial activation. IL-17A Ab significantly reduced brain water content and improved neurological function of ICH mice. In conclusion, our results demonstrated that IL-17A was involved in ICH-induced microglial activation and neuroinflammation. IL-17A Ab might also provide a promising therapeutic strategy in ICH.

PubMed | Chongqing Medical University and The First Affiliated Hospital of Zunyi Medical College
Type: | Journal: Scientific reports | Year: 2016

The recruitment of neural stem/progenitor cells (NSPCs) for brain restoration after injury is a promising regenerative therapeutic strategy. This strategy involves enhancing proliferation, migration and neuronal differentation of NSPCs. To date, the lack of biomaterials, which facilitate these processes to enhance neural regeneration, is an obstacle for the cell replacement therapies. Our previous study has shown that NSPCs grown on poly-L-ornithine (PO) could proliferate more vigorously and differentiate into more neurons than that on Poly-L-Lysine (PLL) and Fibronectin (FN). Here, we demonstrate that PO could promote migration of NSPCs in vitro, and the underlying mechanism is PO activates -Actinins 4 (ACTN4), which is firstly certified to be expessed in NSPCs, to promote filopodia formation and therefore enhances NSPCs migration. Taken together, PO might serve as a better candidate for transplanted biomaterials in the regenerative therapeutic strategy, compared with PLL and FN.

Shu X.M.,The First Affiliated Hospital of Zunyi Medical College | Zhang G.P.,The First Affiliated Hospital of Zunyi Medical College | Yang B.Z.,The First Affiliated Hospital of Zunyi Medical College | Li J.,The First Affiliated Hospital of Zunyi Medical College
Cell Biochemistry and Biophysics | Year: 2013

Characterization of the electroclinical features and evolution of childhood occipital epilepsy of Gastaut (COE-G). Seven children were retrospectively identified as having COE-G and were followed-up clinically using EEGs. Visual manifestations were the most common ictal event. Eye-associated ictal deviation was associated with ipsilateral turning of the head and migraine-like symptoms were frequent. Hemiconvulsions occurred in two children, and only one child had secondary generalized tonic-clonic seizures. In all patients, seizures occurred while awake, while two patients also had seizures while sleeping. EEG showed five patients with occipital spike-wave discharges when their eyes were closed which disappeared once their eyes were opened. Two cases continued having frequent seizures despite antiepileptic drug treatment. These patients also displayed learning difficulties and behavioral impairments after seizure onset. COE-G is a distinctive epileptic syndrome; however, the long-term prognosis for patients with the condition is unclear. © 2013 Springer Science+Business Media New York.

Loading the First Affiliated Hospital of Zunyi Medical College collaborators
Loading the First Affiliated Hospital of Zunyi Medical College collaborators