Entity

Time filter

Source Type

The Euclid, United Kingdom

Penny M.T.,The Euclid Exoplanet Science Working Group | Penny M.T.,University of Manchester | Penny M.T.,Ohio State University | Kerins E.,The Euclid Exoplanet Science Working Group | And 24 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2013

The Euclid mission is the second M-class mission of the ESA Cosmic Vision programme, with the principal science goal of studying dark energy through observations of weak lensing and baryon acoustic oscillations. Euclid is also expected to undertake additional Legacy Science programmes. One such proposal is the Exoplanet Euclid Legacy Survey (ExELS) which will be the first survey able to measure the abundance of exoplanets down to Earth mass for host separations from ~1 au out to the free-floating (unbound) regime. The cold and free-floating exoplanet regimes represent a crucial discovery space for testing planet formation theories. ExELS will use the gravitational microlensing technique and will detect 1000 microlensing events per month over 1.6 deg2 of the Galactic bulge. We assess how many of these events will have detectable planetary signatures using a detailed multiwavelength microlensing simulator - the Manchester-Besançon microLensing Simulator (MABμLS) - which incorporates the Besançon Galactic model with 3D extinction. MABμLS is the first theoretical simulation of microlensing to treat the effects of point spread function (PSF) blending self-consistently with the underlying Galactic model. We use MABμLS, together with current numerical models for the Euclid PSFs, to explore a number of designs and de-scope options for ExELS, including the exoplanet yield as a function of filter choice and slewing time, and the effect of systematic photometry errors. Using conservative extrapolations of current empirical exoplanet mass functions determined from ground-based microlensing and radial velocity surveys, ExELS can expect to detect a few hundred cold exoplanets around mainly G-, K- and M-type stellar hosts, including ~45 Earth-mass planets and ~6 Mars-mass planets for an observing programme totalling 10 months. ExELS will be capable of measuring the cold exoplanet mass function down to Earth mass or below, with orbital separations ranging from ~1 au out to infinity (i.e. the free-floating regime). Recent ground-based microlensing measurements indicate a significant population of free-floating Jupiters, in which case ExELS will detect hundreds of free-floating planets. ExELS will also be sensitive to hot exoplanets and sub-stellar companions through their transit signatures and this is explored in a companion paper. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. Source


McDonald I.,The Euclid Exoplanet Science Working Group | McDonald I.,University of Manchester | Kerins E.,The Euclid Exoplanet Science Working Group | Kerins E.,University of Manchester | And 25 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2014

The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the frequency of cold exoplanets down to Earth mass from host separations of ~1 au out to the free-floating regime by detecting microlensing events in Galactic bulge. We show that ExELS can also detect large numbers of hot, transiting exoplanets in the same population. The combined microlensing+transit survey would allow the first self-consistent estimate of the relative frequencies of hot and cold sub-stellar companions, reducing biases in comparing 'near-field' radial velocity and transiting exoplanets with 'far-field' microlensing exoplanets. The age of the bulge and its spread in metallicity further allows ExELS to better constrain both the variation of companion frequency with metallicity and statistically explore the strength of star-planet tides. We conservatively estimate that ExELS will detect ~4100 sub-stellar objects, with sensitivity typically reaching down to Neptune-mass planets. Of these, ~600 will be detectable in both Euclid's VIS (optical) channel and Near Infrared Spectrometer and Photometer (NISP)-H-band imager, with ~90 per cent of detections being hot Jupiters. Likely scenarios predict a range of 2900-7000 for VIS and 400-1600 for H band. Twice as many can be expected in VIS if the cadence can be increased to match the 20-min H-band cadence. The separation of planets from brown dwarfs via Doppler boosting or ellipsoidal variability will be possible in a handful of cases. Radial velocity confirmation should be possible in some cases, using 30m-class telescopes. We expect secondary eclipses, and reflection and emission from planets to be detectable in up to ~100 systems in both VIS and NISP-H. Transits of ~500 planetary-radius companions will be characterized with two-colour photometry and ~40 with four-colour photometry (VIS,YJH), and the albedo of (and emission from) a large sample of hot Jupiters in the H band can be explored statistically. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. Source

Discover hidden collaborations