The Eppley Institute for Research in Cancer and Allied Diseases

Omaha, NE, United States

The Eppley Institute for Research in Cancer and Allied Diseases

Omaha, NE, United States
SEARCH FILTERS
Time filter
Source Type

Azadmanesh J.,The Eppley Institute for Research in Cancer and Allied Diseases | Trickel S.R.,The Eppley Institute for Research in Cancer and Allied Diseases | Borgstahl G.E.O.,The Eppley Institute for Research in Cancer and Allied Diseases
Journal of Structural Biology | Year: 2016

Superoxide dismutases (SODs) are enzymes that play a key role in protecting cells from toxic oxygen metabolites by disproportionation of two molecules of superoxide into molecular oxygen and hydrogen peroxide via cyclic reduction and oxidation at the active site metal. The azide anion is a potent competitive inhibitor that binds directly to the metal and is used as a substrate analog to superoxide in studies of SOD. The crystal structure of human MnSOD-azide complex was solved and shows the putative binding position of superoxide, providing a model for binding to the active site. Azide is bound end-on at the sixth coordinate position of the manganese ion. Tetrameric electrostatic surfaces were calculated incorporating accurate partial charges for the active site in three states, including a state with superoxide coordinated to the metal using the position of azide as a model. These show facilitation of the anionic ligand to the active site pit via a 'valley' of positively-charged surface patches. Surrounding ridges of negative charge help guide the superoxide anion. Within the active site pit, Arg173 and Glu162 further guide and align superoxide for efficient catalysis. Superoxide coordination at the sixth position causes the electrostatic surface of the active site pit to become nearly neutral. A model for electrostatic-mediated diffusion, and efficient binding of superoxide for catalysis is presented. © 2017 Elsevier Inc.


Helikar T.,University of Nebraska at Omaha | Kochi N.,University of Nebraska at Omaha | Kowal B.,University of Nebraska at Omaha | Dimri M.,George Washington University | And 10 more authors.
PLoS ONE | Year: 2013

The non-receptor tyrosine kinase Src and receptor tyrosine kinase epidermal growth factor receptor (EGFR/ErbB1) have been established as collaborators in cellular signaling and their combined dysregulation plays key roles in human cancers, including breast cancer. In part due to the complexity of the biochemical network associated with the regulation of these proteins as well as their cellular functions, the role of Src in EGFR regulation remains unclear. Herein we present a new comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells. This model, constructed manually from published biochemical literature, consists of 245 nodes representing proteins and their post-translational modifications sites, and over 1,000 biochemical interactions. Using computer simulations of the model, we find it is able to reproduce a number of cellular phenomena. Furthermore, the model predicts that overexpression of Src results in increased endocytosis of EGFR in the absence/low amount of the epidermal growth factor (EGF). Our subsequent laboratory experiments also suggest increased internalization of EGFR upon Src overexpression under EGF-deprived conditions, further supporting this model-generated hypothesis. © 2013 Helikar et al.


Porta J.,The Eppley Institute for Research in Cancer and Allied Diseases | Porta J.,87696 Nebraska Medical Center | Vahedi-Faridi A.,University of Toledo | Borgstahl G.E.O.,The Eppley Institute for Research in Cancer and Allied Diseases
Journal of Molecular Biology | Year: 2010

The superoxide dismutase (SOD) enzymes are important antioxidant agents that protect cells from reactive oxygen species. The SOD family is responsible for catalyzing the disproportionation of superoxide radical to oxygen and hydrogen peroxide. Manganese- and iron-containing SOD exhibit product inhibition whereas Cu/ZnSOD does not. Here, we report the crystal structure of Escherichia coli MnSOD with hydrogen peroxide cryotrapped in the active site. Crystallographic refinement to 1.55 Å and close inspection revealed electron density for hydrogen peroxide in three of the four active sites in the asymmetric unit. The hydrogen peroxide molecules are in the position opposite His26 that is normally assumed by water in the trigonal bipyramidal resting state of the enzyme. Hydrogen peroxide is present in active sites B, C, and D and is side-on coordinated to the active-site manganese. In chains B and D, the peroxide is oriented in the plane formed by manganese and ligands Asp167 and His26. In chain C, the peroxide is bound, making a 70° angle to the plane. Comparison of the peroxide-bound active site with the hydroxide-bound octahedral form shows a shifting of residue Tyr34 towards the active site when peroxide is bound. Comparison with peroxide-soaked Cu/ZnSOD indicates end-on binding of peroxide when the SOD does not exhibit inhibition by peroxide and side-on binding of peroxide in the product-inhibited state of MnSOD. © 2010 Elsevier Ltd.


PubMed | The Eppley Institute for Research in Cancer and Allied Diseases
Type: Journal Article | Journal: Acta crystallographica. Section D, Biological crystallography | Year: 2011

Recent challenges in biological X-ray crystallography include the processing of modulated diffraction data. A modulated crystal has lost its three-dimensional translational symmetry but retains long-range order that can be restored by refining aperiodic modulation function. The presence of a crystal modulation is indicated by an X-ray diffraction pattern with periodic main reflections flanked by off-lattice satellite reflections. While the periodic main reflections can easily be indexed using three reciprocal-lattice vectors a*, b*, c*, the satellite reflections have a non-integral relationship to the main lattice and require a q vector for indexing. While methods for the processing of diffraction intensities from modulated small-molecule crystals are well developed, they have not been applied in protein crystallography. A recipe is presented here for processing incommensurately modulated data from a macromolecular crystal using the Eval program suite. The diffraction data are from an incommensurately modulated crystal of profilin-actin with single-order satellites parallel to b*. The steps taken in this report can be used as a guide for protein crystallographers when encountering crystal modulations. To our knowledge, this is the first report of the processing of data from an incommensurately modulated macromolecular crystal.

Loading The Eppley Institute for Research in Cancer and Allied Diseases collaborators
Loading The Eppley Institute for Research in Cancer and Allied Diseases collaborators