Time filter

Source Type

Camden, NJ, United States

Londin E.R.,Thomas Jefferson University | Keller M.A.,Red Cross | D'Andrea M.R.,The Coriell Institute for Medical Research | Delgrosso K.,Kimmel Cancer Center | And 7 more authors.
BMC Genomics

Background: The creation of lymphoblastoid cell lines (LCLs) through Epstein-Barr virus (EBV) transformation of B-lymphocytes can result in a valuable biomaterial for cell biology research and a renewable source of DNA. While LCLs have been used extensively in cellular and genetic studies, the process of cell transformation and expansion during culturing may introduce genomic changes that may impact their use and the interpretation of subsequent genetic findings.Results: We performed whole exome sequencing on a tetrad family using DNA derived from peripheral blood mononuclear cells (PBMCs) and LCLs from each individual. We generated over 4.7 GB of mappable sequence to a 125X read coverage per sample. An average of 19,354 genetic variants were identified. Comparison of the two DNA sources from each individual showed an average concordance rate of 95.69%. By lowering the variant calling parameters, the concordance rate between the paired samples increased to 99.82%. Sanger sequencing of a subset of the remaining discordant variants did confirm the presence of de novo mutations arising in LCLs.Conclusions: By varying software stringency parameters, we identified 99% concordance between DNA sequences derived from the two different sources from the same donors. These results suggest that LCLs are an appropriate representation of the genetic material of the donor and suggest that EBV transformation can result in low-level generation of de novo mutations. Therefore, use of PBMC or early passage EBV-transformed cells is recommended. These findings have broad-reaching implications, as there are thousands of LCLs in public biorepositories and individual laboratories. © 2011 Londin et al; licensee BioMed Central Ltd. Source

Gharani N.,The Coriell Institute for Medical Research | Keller M.A.,The Coriell Institute for Medical Research | Keller M.A.,Red Cross | Stack C.B.,The Coriell Institute for Medical Research | And 5 more authors.
Genome Medicine

Implementation of pharmacogenomics (PGx) in clinical care can lead to improved drug efficacy and reduced adverse drug reactions. However, there has been a lag in adoption of PGx tests in clinical practice. This is due in part to a paucity of rigorous systems for translating published clinical and scientific data into standardized diagnostic tests with clear therapeutic recommendations. Here we describe the Pharmacogenomics Appraisal, Evidence Scoring and Interpretation System (PhAESIS), developed as part of the Coriell Personalized Medicine Collaborative research study, and its application to seven commonly prescribed drugs. © 2013 Gharani et al.; licensee BioMed Central Ltd. Source

Shriner D.,National Health Research Institute | Herbert A.,Boston University | Doumatey A.P.,National Health Research Institute | Zhou J.,National Health Research Institute | And 7 more authors.

The incidence of chronic kidney disease varies by ethnic group in the USA, with African Americans displaying a two-fold higher rate than European Americans. One of the two defining variables underlying staging of chronic kidney disease is the glomerular filtration rate. Meta-analysis in individuals of European ancestry has identified 23 genetic loci associated with the estimated glomerular filtration rate (eGFR). We conducted a follow-up study of these 23 genetic loci using a population-based sample of 1,018 unrelated admixed African Americans. We included in our follow-up study two variants in APOL1 associated with end-stage kidney disease discovered by admixture mapping in admixed African Americans. To address confounding due to admixture, we estimated local ancestry at each marker and global ancestry. We performed regression analysis stratified by local ancestry and combined the resulting regression estimates across ancestry strata using an inverse variance-weighted fixed effects model. We found that 11 of the 24 loci were significantly associated with eGFR in our sample. The effect size estimates were not significantly different between the subgroups of individuals with two copies of African ancestry vs. two copies of European ancestry for any of the 11 loci. In contrast, allele frequencies were significantly different at 10 of the 11 loci. Collectively, the 11 loci, including four secondary signals revealed by conditional analyses, explained 14.2% of the phenotypic variance in eGFR, in contrast to the 1.4% explained by the 24 loci in individuals of European ancestry. Our findings provide insight into the genetic basis of variation in renal function among admixed African Americans. Source

Discover hidden collaborations