Entity

Time filter

Source Type

Stow, OH, United States

Osteoarthritis (OA) is the most common cause of musculoskeletal disability in the elderly, and it places an enormous economic burden on society, which will remain a major health care challenge with an aging population. Management of OA is primarily focused on palliative relief using agents such as nonsteroidal anti-inflammatory drugs (NSAID) and analgesics. However, such an approach is limited by a narrow therapeutic focus that fails to address the progressive and multimodal nature of OA. Given the favorable safety profile of most nutritional interventions, identifying disease-modifying pharmaconutrients capable of improving symptoms and also preventing, slowing, or even reversing the degenerative process in OA should remain an important paradigm in translational and clinical research. The goals of pharmaconutrition for metabolic optimization are to drive biochemical reactions in a desired direction and to meet health condition-specific metabolic demands. Applying advances in nutritional science to musculoskeletal medicine remains challenging, given the fluid and dynamic nature of the field, along with a rapidly developing regulatory climate over manufacturing and commerce requirements. The purpose of this article is to review the available literature on effectiveness and potential mechanism for OA of micronutrient vitamins; minerals; glycosaminoglycans; avocado-soybean unsaponifiable fractions; methylsulfonylmethane; s-adenosylmethionine; undenatured and hydrolyzed collagen preparations; phytoflavonoid compounds found in fruits, vegetables, spices, teas, and nuts; and other nutrients on the horizon. There also is a discussion on the concept of rational polysupplementation via the strategic integration of multiple nutraceuticals with potential complementary mechanisms for improving outcomes in OA. As applied nutritional science evolves, it will be important to stay on the forefront of proteomics, metabolomics, epigenetics, and nutrigenomics, because they hold enormous potential for developing novel therapeutic and prognostic breakthroughs in many areas of medicine, including OA. © 2012 American Academy of Physical Medicine and Rehabilitation. Source


Osteoarthritis (OA) is the most common cause of musculoskeletal disability in elderly individuals, and it places an enormous economic burden on society. Management of OA is primarily focused on palliative relief by using agents such as nonsteroidal anti-inflammatory drugs and analgesics. However, such an approach is limited by a narrow therapeutic focus that fails to address the progressive and multimodal nature of OA. Given the favorable safety profile of most nutritional interventions, identifying disease-modifying nutritional agents capable of improving symptoms and also preventing, slowing, or even reversing the degenerative process in OA should remain an important paradigm in translational and clinical research. Applying advances in nutritional science to musculoskeletal medicine remains challenging, given the fluid and dynamic nature of the field, along with a rapidly developing regulatory climate over manufacturing and commerce requirements. The aim of this article is to review the available literature on effectiveness and potential mechanism of macronutrients for OA, with a focus on the following: long-chain ω-3 essential fatty acids eicosapentaenoic acid and docosahexaenoic acid, functional ω-6 fatty acid γ-linolenic acid, and macronutrient composition of background diet. There also is a discussion about the concept of rational polysupplementation via the strategic integration of multiple nutraceuticals with potential complementary mechanisms for improving outcomes in OA. As applied nutritional science evolves, it will be important to stay on the forefront of proteomics, metabolomics, epigenetics, and nutrigenomics, because they hold enormous potential for developing novel therapeutic and prognostic breakthroughs in many areas of medicine, including OA. © 2012 American Academy of Physical Medicine and Rehabilitation. Source

Discover hidden collaborations