The Cancer Research Institute

Point Baker, FL, United States

The Cancer Research Institute

Point Baker, FL, United States

Time filter

Source Type

News Article | February 24, 2017
Site: www.eurekalert.org

A new discovery by researchers at the Fred Hutchinson Cancer Research Center in Seattle makes an important step in identifying which specific T cells within the diverse army of a person's immune system are best suited to fight cancer. The findings will be published February 24 in Science Immunology. "We found that the cells in each patient's immune system that will ultimately have a clinical effect are incredibly rare," said Dr. Aude Chapuis, lead author of the paper and a member of the Clinical Research Division at Fred Hutch. "Knowing what we've found, we can now refine the selection of the cells that we will ultimately use for adoptive T cell transfer, so that the cells persist and keep the tumors at bay longer in our patients." Dr. Chapuis is an expert in adoptive T cell transfer, a new class of treatments that use immune T cells to fight cancer. It works by obtaining T cells from the patient's own blood, priming them to seek and destroy cancerous cells, multiplying them in the lab and then returning them to the patient. In some treatment settings, the cancer-targeting T cells are instead obtained from a healthy donor's blood. But since each infusion contains thousands of varieties of T cells each with varying cancer-killing capabilities, it's been unclear which ones offer the most effective anti-cancer punch. Making it more complicated, the cells' anti-cancer properties change as they grow in the lab. The offspring or "clones" they create differ from the originals. It's like a "black box," Dr. Chapuis said, in that scientists have rarely been able to identify the composition of cells that are leading the attack on cancer. A newly developed method of tracking cells lets light into that black box. "High throughput T cell receptor sequencing allows us to distinguish the cells and figure out where they came from, which ones grow in culture and which ones persist after being transferred to the patient," said Dr. Chapuis, who is also an assistant professor in the University of Washington's School of Medicine. "We can finally track in detail what's going on when doing adoptive T cell transfers," she said. The method distinguishes T cells from each other according to the nature of their receptor, which is T cells' weapon against cancer. Adaptive Biotechnologies Corp, a spinout of Fred Hutch, developed high-throughput receptor sequencing for immune cells. The technology gives each T cell receptor a "bar code," allowing the researchers to track all of the diverse members of an individual patient's T cell army. Following the bar codes of the T cell receptors, Fred Hutch scientists are tracking thousands of immune cells after being transferred into patients. They then examined how the cells in the mix related to responses to adoptive T cell therapy treatment in 10 metastatic melanoma patients. The researchers found that in the two patients who went into complete remission after T cell infusion, the specific T cells that ended up dominating the patient's cancer-fighting army after infusion were extremely rare in their bodies originally. The method also allowed the researchers to directly observe in humans that the T cells likely having the most powerful effect tended to be younger, suggesting that they had better capabilities to proliferate and survive -- characteristics essential for long-term tumor control. Dr. Chapuis and her collaborators are now looking at how to select out the powerful but rare immune cells and increase their population before being infused into patients. They're testing the approach in two current clinical trials in lung cancer patients (ClinicalTrials.gov identifier NCT02408016) and acute myeloid leukemia patients (NCT02770820). The Cancer Research Institute and Stand Up To Cancer program funded the research. The Fred Hutchinson Cancer Research Center has licensed technology to Adaptive Biotechnologies Corp and owns a stake in the company. In addition to Dr. Chapuis, the other corresponding author of the paper is Cassian Yee, who did the work while at Fred Hutch and is now at the MD Anderson Cancer Center. Other co-authors are Cindy Desmarais, Ryan Emerson, Thomas Schmitt, Kendall Shibuya, Ivy Lai, Felecia Wagener, Jeffrey Chou, Ilana Roberts, David Coffey, Edus Warren, Harlan Robins and Philip Greenberg. Learn more about Dr. Chapuis' research in a video: https:/ At Fred Hutchinson Cancer Research Center, home to three Nobel laureates, interdisciplinary teams of world-renowned scientists seek new and innovative ways to prevent, diagnose and treat cancer, HIV/AIDS and other life-threatening diseases. Fred Hutch's pioneering work in bone marrow transplantation led to the development of immunotherapy, which harnesses the power of the immune system to treat cancer. An independent, nonprofit research institute based in Seattle, Fred Hutch houses the nation's first cancer prevention research program, as well as the clinical coordinating center of the Women's Health Initiative and the international headquarters of the HIV Vaccine Trials Network. Private contributions are essential for enabling Fred Hutch scientists to explore novel research opportunities that lead to important medical breakthroughs. For more information visit fredhutch.org or follow Fred Hutch on Facebook, Twitter or YouTube.


News Article | October 28, 2016
Site: globenewswire.com

What:  Exchange Traded Concepts, Loncar Investments, and Cancer Research Institute will visit the Nasdaq MarketSite in Times Square to celebrate cancer immunotherapy advances and the one-year listing anniversary of the Loncar Cancer Immunotherapy ETF. In honor of the occasion, Brad Loncar, Chief Executive Officer of Loncar Investments, & Jill O’Donnell-Tormey, Ph.D., CEO and Director of Scientific Affairs of the Cancer Research Institute, will ring the Opening Bell. When: Monday, October 31, 2016 – 9:15 a.m. to 9:30 a.m. ET Social Media: For multimedia features such as exclusive content, photo postings, status updates and video of bell ceremonies, please visit our Facebook page: http://www.facebook.com/NASDAQ. For photos from ceremonies and events, please visit our Instagram page: http://instagram.com/nasdaq For livestream of ceremonies and events, please visit our YouTube page: http://www.youtube.com/nasdaq/live For news tweets, please visit our Twitter page: http://twitter.com/nasdaq For exciting viral content and ceremony photos, please visit our Tumblr page: http://nasdaq.tumblr.com/ Webcast: A live stream of the Nasdaq Opening Bell will be available at: https://new.livestream.com/nasdaq/live or http://www.nasdaq.com/about/marketsitetowervideo.asx Photos: To obtain a hi-resolution photograph of the Market Open, please go to http://business.nasdaq.com/discover/market-bell-ceremonies and click on the market open of your choice. About Cancer Research Institute The Cancer Research Institute (CRI), established in 1953, is the world’s leading nonprofit organization dedicated exclusively to transforming cancer patient care by advancing scientific efforts to develop new and effective immune system-based strategies to prevent, diagnose, treat, and eventually cure all cancers. Guided by a world-renowned Scientific Advisory Council that includes three Nobel laureates and 26 members of the National Academy of Sciences, CRI has invested $336 million in support of research conducted by immunologists and tumor immunologists at the world’s leading medical centers and universities, and has contributed to many of the key scientific advances that demonstrate the potential for immunotherapy to change the face of cancer treatment. To learn more, go to www.cancerresearch.org About Exchange Traded Concepts ETC is carving out a niche as a portal to launch new, custom exchange-traded funds efficiently and cost-effectively through a complete turnkey solution. ETC is a private-label ETF advisor with passive and active exemptive relief from the Securities and Exchange Commission (SEC) to launch both domestic and international equity exchange traded funds under the Investment Company Act of 1940. For more information, please go to www.exchangetradedconcepts.com. About Loncar Investments Loncar Investments, LLC, the provider of the Loncar Cancer Immunotherapy Index, is committed to making the biotechnology space more approachable to a wider range of investors. The company is principally owned by biotech investor and analyst Brad Loncar. Mr. Loncar manages a biotech-focused family portfolio from his Lenexa, Kansas office. He can be followed on Twitter at @bradloncar and his commentary is available at www.loncarblog.com. About Nasdaq Nasdaq (Nasdaq:NDAQ) is a leading provider of trading, clearing, exchange technology, listing, information and public company services across six continents. Through its diverse portfolio of solutions, Nasdaq enables customers to plan, optimize and execute their business vision with confidence, using proven technologies that provide transparency and insight for navigating today's global capital markets. As the creator of the world's first electronic stock market, its technology powers more than 70 marketplaces in 50 countries, and 1 in 10 of the world's securities transactions. Nasdaq is home to more than 3,700 listed companies with a market value of approximately $9.3 trillion and nearly 18,000 corporate clients. To learn more, visit: nasdaq.com/ambition or business.nasdaq.com.


A new discovery by researchers at the Fred Hutchinson Cancer Research Center in Seattle makes an important step in identifying which specific T cells within the diverse army of a person's immune system are best suited to fight cancer. The findings will be published February 24 in Science Immunology. "We found that the cells in each patient's immune system that will ultimately have a clinical effect are incredibly rare," said Dr. Aude Chapuis, lead author of the paper and a member of the Clinical Research Division at Fred Hutch. "Knowing what we've found, we can now refine the selection of the cells that we will ultimately use for adoptive T cell transfer, so that the cells persist and keep the tumors at bay longer in our patients." Dr. Chapuis is an expert in adoptive T cell transfer, a new class of treatments that use immune T cells to fight cancer. It works by obtaining T cells from the patient's own blood, priming them to seek and destroy cancerous cells, multiplying them in the lab and then returning them to the patient. In some treatment settings, the cancer-targeting T cells are instead obtained from a healthy donor's blood. But since each infusion contains thousands of varieties of T cells each with varying cancer-killing capabilities, it's been unclear which ones offer the most effective anti-cancer punch. Making it more complicated, the cells' anti-cancer properties change as they grow in the lab. The offspring or "clones" they create differ from the originals. It's like a "black box," Dr. Chapuis said, in that scientists have rarely been able to identify the composition of cells that are leading the attack on cancer. A newly developed method of tracking cells lets light into that black box. "High throughput T cell receptor sequencing allows us to distinguish the cells and figure out where they came from, which ones grow in culture and which ones persist after being transferred to the patient," said Dr. Chapuis, who is also an assistant professor in the University of Washington's School of Medicine. "We can finally track in detail what's going on when doing adoptive T cell transfers," she said. The method distinguishes T cells from each other according to the nature of their receptor, which is T cells' weapon against cancer. Adaptive Biotechnologies Corp, a spinout of Fred Hutch, developed high-throughput receptor sequencing for immune cells. The technology gives each T cell receptor a "bar code," allowing the researchers to track all of the diverse members of an individual patient's T cell army. Following the bar codes of the T cell receptors, Fred Hutch scientists are tracking thousands of immune cells after being transferred into patients. They then examined how the cells in the mix related to responses to adoptive T cell therapy treatment in 10 metastatic melanoma patients. The researchers found that in the two patients who went into complete remission after T cell infusion, the specific T cells that ended up dominating the patient's cancer-fighting army after infusion were extremely rare in their bodies originally. The method also allowed the researchers to directly observe in humans that the T cells likely having the most powerful effect tended to be younger, suggesting that they had better capabilities to proliferate and survive -- characteristics essential for long-term tumor control. Dr. Chapuis and her collaborators are now looking at how to select out the powerful but rare immune cells and increase their population before being infused into patients. They're testing the approach in two current clinical trials in lung cancer patients (ClinicalTrials.gov identifier NCT02408016) and acute myeloid leukemia patients (NCT02770820). The Cancer Research Institute and Stand Up To Cancer program funded the research. The Fred Hutchinson Cancer Research Center has licensed technology to Adaptive Biotechnologies Corp and owns a stake in the company. In addition to Dr. Chapuis, the other corresponding author of the paper is Cassian Yee, who did the work while at Fred Hutch and is now at the MD Anderson Cancer Center. Other co-authors are Cindy Desmarais, Ryan Emerson, Thomas Schmitt, Kendall Shibuya, Ivy Lai, Felecia Wagener, Jeffrey Chou, Ilana Roberts, David Coffey, Edus Warren, Harlan Robins and Philip Greenberg.


Smith J.S.,The Cancer Research Institute | Colon J.,The Cancer Research Institute | Madero-Visbal R.,The Cancer Research Institute | Isley B.,The Cancer Research Institute | And 3 more authors.
Anti-Cancer Agents in Medicinal Chemistry | Year: 2010

We sought to determine whether administration of glycerol guaiacolate at an optimal biological dose inhibits human breast cancer cell growth. Human breast cancer MCF-7 and ZR-75-1 cells were treated with glycerol guaiacolate and the therapeutic efficacy and biological activity of this drug was investigated on breast cancer cell growth. MCF-7 cells were injected into the mammary fat pad of overectamized female athymic nude mice. Ten days later, animals were treated with daily intraperitoneal injections of glycerol guaiacolate for six weeks. Tumor size and volume was monitored and immunohistochemical analysis on MUC1, p21 and ki-67 was performed. Glycerol guaiacolate decreased breast cancer cell growth in a dose-dependent manner, decreased cell migration, and caused G1 cell cycle arrest. Our results demonstrate that glycerol guaiacolate inhibits MUC1 protein and mRNA expression levels and significantly increased p21 expression in human breast cancer cells as well as induced PARP cleavage. Similarly, glycerol guaiacolate inhibited breast tumor growth in vivo as well as enhanced p21 expression and decreased breast tumor cell proliferation (ki-67 expression). Collectively, our results demonstrate that glycerol guaiacolate decreased MUC1 expression and enhanced cell growth inhibition by inducing p21 expression in breast cancer cells. These findings suggest that glycerol guaiacolate may provide a novel and effective approach for the treatment of human breast cancer. © 2010 Bentham Science Publishers Ltd.

Loading The Cancer Research Institute collaborators
Loading The Cancer Research Institute collaborators