Time filter

Source Type

Harvey C.A.,The Betty and Gordon Moore Center for Science and Oceans | Chacon M.,The Betty and Gordon Moore Center for Science and Oceans | Donatti C.I.,The Betty and Gordon Moore Center for Science and Oceans | Garen E.,The Betty and Gordon Moore Center for Science and Oceans | And 22 more authors.
Conservation Letters | Year: 2014

Addressing the global challenges of climate change, food security, and poverty alleviation requires enhancing the adaptive capacity and mitigation potential of agricultural landscapes across the tropics. However, adaptation and mitigation activities tend to be approached separately due to a variety of technical, political, financial, and socioeconomic constraints. Here, we demonstrate that many tropical agricultural systems can provide both mitigation and adaptation benefits if they are designed and managed appropriately and if the larger landscape context is considered. Many of the activities needed for adaptation and mitigation in tropical agricultural landscapes are the same needed for sustainable agriculture more generally, but thinking at the landscape scale opens a new dimension for achieving synergies. Intentional integration of adaptation and mitigation activities in agricultural landscapes offers significant benefits that go beyond the scope of climate change to food security, biodiversity conservation, and poverty alleviation. However, achieving these objectives will require transformative changes in current policies, institutional arrangements, and funding mechanisms to foster broad-scale adoption of climate-smart approaches in agricultural landscapes. ©2013 Wiley Periodicals, Inc.


Vignola R.,Tropical Agriculture Research and Higher Education Center | Vignola R.,University of British Columbia | Harvey C.A.,The Betty and Gordon Moore Center for Science and Oceans | Bautista-Solis P.,Tropical Agriculture Research and Higher Education Center | And 6 more authors.
Agriculture, Ecosystems and Environment | Year: 2015

Despite the growing interest in Ecosystem-based Adaptation, there has been little discussion of how this approach could be used to help smallholder farmers adapt to climate change, while ensuring the continued provision of ecosystem services on which farming depends. Here we provide a framework for identifying which agricultural practices could be considered 'Ecosystem-based Adaptation' practices, and highlight the opportunities and constraints for using these practices to help smallholder farmers adapt to climate change. We argue that these practices are (a) based on the conservation, restoration or management of biodiversity, ecosystem processes or services, and (b) improve the ability of crops and livestock to maintain crop yields under climate change and/or by buffering biophysical impacts of extreme weather events or increased temperatures. To be appropriate for smallholder farmers, these practices must also help increase their food security, increase or diversify their sources of income generation, take advantage of local or traditional knowledge, be based on local inputs, and have low implementation and labor costs. To illustrate the application of this definition, we provide some examples from smallholders' coffee management practices in Mesoamerica. We also highlight three key obstacles that currently constrain the use of Ecosystem-based Adaptation practices (i) the need for greater understanding of their effectiveness and the factors that drive their adoption, (ii) the development supportive and integrated agriculture and climate change policies that specifically promote them as part of a broader agricultural adaptation program; and (iii) the establishment and maintaining strong and innovative extension programs for smallholder farmers. Our framework is an important starting point for identifying which Ecosystem-based Adaptation practices are appropriate for smallholder farmers and merit attention in international and national adaptation efforts. © 2015 Z.


PubMed | Claro, Vanderbilt University, Wildlife Conservation Society and The Betty and Gordon Moore Center for Science and Oceans
Type: Comparative Study | Journal: PloS one | Year: 2015

Inter-specific competition is considered one of the main selective pressures affecting species distribution and coexistence. Different species vary in the way they forage in order to minimize encounters with their competitors and with their predators. However, it is still poorly known whether and how native species change their foraging behavior in the presence of exotic species, particularly in South America. Here we compare diet overlap of fruits and foraging activity period of two sympatric native ungulates (the white-lipped peccary, Tayassu pecari, and the collared peccary, Pecari tajacu) with the invasive feral pig (Sus scrofa) in the Brazilian Pantanal. We found high diet overlap between white-lipped peccaries and feral pigs, but low overlap between collared peccaries and feral pigs. Furthermore, we found that feral pigs may influence the foraging period of both native peccaries, but in different ways. In the absence of feral pigs, collared peccary activity peaks in the early evening, possibly allowing them to avoid white-lipped peccary activity peaks, which occur in the morning. In the presence of feral pigs, collared peccaries forage mostly in early morning, while white-lipped peccaries forage throughout the day. Our results indicate that collared peccaries may avoid foraging at the same time as white-lipped peccaries. However, they forage during the same periods as feral pigs, with whom they have lower diet overlap. Our study highlights how an exotic species may alter interactions between native species by interfering in their foraging periods.

Loading The Betty and Gordon Moore Center for Science and Oceans collaborators
Loading The Betty and Gordon Moore Center for Science and Oceans collaborators