The Australian Astronomical Observatory

Box Hill South, Australia

The Australian Astronomical Observatory

Box Hill South, Australia
SEARCH FILTERS
Time filter
Source Type

Owers M.S.,Macquarie University | Owers M.S.,The Australian Astronomical Observatory | Allen J.T.,University of Sydney | Baldry I.,Liverpool John Moores University | And 45 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2017

We describe the selection of galaxies targeted in eight low-redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; 0.029 < z < 0.058) as part of the Sydney-AAO Multi-Object Integral field spectrograph Galaxy Survey (SAMI-GS). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9-m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterize the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21 257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness (~94 per cent) for rpetro ≤ 19.4 and cluster-centric distances R < 2R200. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, R200, virial and caustic masses, as well as cluster structure. The clusters have virial masses 14.25 ≤ log(M200/M·) ≤ 15.19. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and point spread function matched photometry are derived from Sloan Digital Sky Survey and VLT Survey Telescope/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have R


Sharp R.,Australian National University | Sharp R.,University of Sydney | Allen J.T.,University of Sydney | Fogarty L.M.R.,University of Sydney | And 53 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2015

We present a methodology for the regularization and combination of sparse sampled and irregularly gridded observations from fibre-optic multiobject integral field spectroscopy. The approach minimizes interpolation and retains image resolution on combining subpixel dithered data. We discuss the methodology in the context of the Sydney-AAO multiobject integral field spectrograph (SAMI) Galaxy Survey underway at the Anglo-Australian Telescope. The SAMI instrument uses 13 fibre bundles to perform high-multiplex integral field spectroscopy across a 1° diameter field of view. The SAMI Galaxy Survey is targeting ~3000 galaxies drawn from the full range of galaxy environments. We demonstrate the subcritical sampling of the seeing and incomplete fill factor for the integral field bundles results in only a 10 per cent degradation in the final image resolution recovered. We also implement a new methodology for tracking covariance between elements of the resulting data cubes which retains 90 per cent of the covariance information while incurring only a modest increase in the survey data volume. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.


de Burgh-Day C.O.,University of Melbourne | de Burgh-Day C.O.,The Australian Astronomical Observatory | Taylor E.N.,University of Melbourne | Webster R.L.,University of Melbourne | And 2 more authors.
Publications of the Astronomical Society of Australia | Year: 2015

Using both a theoretical and an empirical approach, we have investigated the frequency of low redshift galaxy-galaxy lensing systems in which the signature of 3D weak lensing might be directly detectable. We find good agreement between these two approaches. Using data from the Galaxy and Mass Assembly redshift survey we estimate the frequency of detectable weak lensing at low redshift. We find that below a redshift of z ~ 0.6, the probability of a galaxy being weakly lensed by γ ⩾ 0.02 is ~ 0.01. We have also investigated the feasibility of measuring the scatter in the M * − Mh relation using shear statistics. We estimate that for a shear measurement error of Δγ = 0.02 (consistent with the sensitivity of the Direct Shear Mapping technique), with a sample of ~$50,000 spatially and spectrally resolved galaxies, the scatter in the M * − Mh relation could be measured. While there are currently no existing IFU surveys of this size, there are upcoming surveys that will provide this data (e.g The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), surveys with Hector, and the Square Kilometre Array (SKA)). Copyright © Astronomical Society of Australia 2015


De Burgh-Day C.O.,University of Melbourne | De Burgh-Day C.O.,The Australian Astronomical Observatory | De Burgh-Day C.O.,Australian National University | Taylor E.N.,University of Melbourne | And 5 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2015

We have developed a new technique called direct shear mapping (DSM) to measure gravitational lensing shear directly from observations of a single background source. The technique assumes the velocity map of an unlensed, stably rotating galaxy will be rotationally symmetric. Lensing distorts the velocity map making it asymmetric. The degree of lensing can be inferred by determining the transformation required to restore axisymmetry. This technique is in contrast to traditional weak lensing methods, which require averaging an ensemble of background galaxy ellipticity measurements, to obtain a single shear measurement. We have tested the efficacy of our fitting algorithm with a suite of systematic tests on simulated data. We demonstrate that we are in principle able to measure shears as small as 0.01. In practice, we have fitted for the shear in very low redshift (and hence unlensed) velocity maps, and have obtained null result with an error of ±0.01. This high-sensitivity results from analysing spatially resolved spectroscopic images (i.e. 3D data cubes), including not just shape information (as in traditional weak lensing measurements) but velocity information as well. Spirals and rotating ellipticals are ideal targets for this new technique. Data from any large Integral Field Unit (IFU) or radio telescope is suitable, or indeed any instrument with spatially resolved spectroscopy such as the Sydney-Australian-Astronomical Observatory Multi-Object Integral Field Spectrograph (SAMI), the Atacama Large Millimeter/submillimeter Array (ALMA), the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Square Kilometer Array (SKA). © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Loading The Australian Astronomical Observatory collaborators
Loading The Australian Astronomical Observatory collaborators